У кімнаті за температури 18 °С відносна вологість повітря 30 %. Скільки води треба додатково випаровувати для збільшення вологості до 60 %, якщо об єм кімнати - 50 м^2
Две бригады должны были выполнить заказ за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада заканчивала выполнение заказа еще 7 дней. За сколько дней могла бы выполнить заказ каждая из бригад, работая отдельно.
Р е ш е н и е. Пусть первая бригада выполняет задание за х дней, вторая бригада – за у дней. Примем всю работу за единицу. Тогда 1/х – производительность первой бригады, а 1/у – второй. Так как две бригады должны выполнить заказ за 12 дней, то получим первое уравнение
12(1/х+ 1/у)=1
Из второго условия следует, что вторая бригада работала 15 дней, а первая - только 8 дней. Значит, второе уравнение имеет вид
8/х+15/у=1
Таким образом, имеем систему: 12/x+12/y=1, 8/x+15/y=1
Вычтем из второго уравнения первое, получим: 21/у=1 ? у=21. Тогда 12/х+12/21=1 ? 12/х=3/7 ? х=28.
О т в е т: за 28 дней выполнит заказ первая бригада, за 21 день – вторая.
В бассейн проведены две трубы – подающая и отводящая, причем через первую трубу бассейн наполняется на 2 ч дольше, чем через вторую вода из бассейна выливается. При заполненном на одну треть бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 ч. За сколько часов через одну первую трубу может наполниться бассейн, и за сколько времени через одну вторую трубу может осушиться полный бассейн?
Р е ш е н и е: Пусть V м3 – объем бассейна, х м3 /ч – производительность подающей трубы, у м3 /ч - отводящей. Тогда V/x ч – время, необходимое подающей трубе для заполнения бассейна, V/у ч – время, необходимое отводящей на осушение бассейна. По условию задачи
V/x- V/у=2.
Так как производительность отводящей трубы больше производительности наполняющей, то при включенных обеих трубах будет происходить осушение бассейна и одна треть бассейна осушится за время (V/3)(у-х), которое по условию задачи равно 8 ч. Итак, условие задачи может быть записано в виде системы двух уравнений с тремя неизвестными:
В задаче необходимо найти V/х и V/у. Выделим в уравнениях комбинацию неизвестных V/х и V/у, записав систему в виде: V/x-V/y=2, V/(y-x)=24 или V/x-V/y=2, y/V-x/V=1/24
Вводя новые неизвестные V/х=а и V/у=b, получаем следующую систему: a-b=2, 1/b-1/a=1/24
Подставляя во второе уравнение выражение a=b+2, имеем уравнение относительно b: 1/b-1/(b+2)=1/24
решив которое найдем b1=6, b2=-8. Условию задачи удовлетворяют первый корень b1=6(ч). Из первого уравнения последней системы находим а=8(ч), т.е. первая труба наполняет бассейн за 8ч.
О т в е т: через первую трубу бассейн наполнится через 8 ч, через вторую трубу бассейн осушится через 6 ч.
ответ:Дано :
р = 400 кПа = 400000 Н
F2 ( сила действующая на меньший поршень ) = 200 Н
S1 ( площадь большего поршня ) = 0,04 м²
а ) F1 - ?
б ) ( S1 ) / ( S2 ) - ?
p = const = 400000 Н
р = F / S
F = pS
S = F / p
а ) F1 ( сила действующая на больший поршень ) = p * S1
F1 = 400000 * 0,04 = 16000 Н
б ) S2 ( площадь меньшего поршня ) = F2 / p
S2 = 200 / 400000 = 0,0005 м²
выигрыш в силе равен отношению площадей большего к меньшему поршней
выигрыш в силе = S1 / S2
выигрыш в силе = 0,04 / 0,0005 = 80 раз
ответ : а ) 16000 Н = 16 кН
б ) 80 раз
Объяснение:
Две бригады должны были выполнить заказ за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада заканчивала выполнение заказа еще 7 дней. За сколько дней могла бы выполнить заказ каждая из бригад, работая отдельно.
Р е ш е н и е. Пусть первая бригада выполняет задание за х дней, вторая бригада – за у дней. Примем всю работу за единицу. Тогда 1/х – производительность первой бригады, а 1/у – второй. Так как две бригады должны выполнить заказ за 12 дней, то получим первое уравнение
12(1/х+ 1/у)=1
Из второго условия следует, что вторая бригада работала 15 дней, а первая - только 8 дней. Значит, второе уравнение имеет вид
8/х+15/у=1
Таким образом, имеем систему: 12/x+12/y=1, 8/x+15/y=1
Вычтем из второго уравнения первое, получим: 21/у=1 ? у=21. Тогда 12/х+12/21=1 ? 12/х=3/7 ? х=28.
О т в е т: за 28 дней выполнит заказ первая бригада, за 21 день – вторая.
В бассейн проведены две трубы – подающая и отводящая, причем через первую трубу бассейн наполняется на 2 ч дольше, чем через вторую вода из бассейна выливается. При заполненном на одну треть бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 ч. За сколько часов через одну первую трубу может наполниться бассейн, и за сколько времени через одну вторую трубу может осушиться полный бассейн?
Р е ш е н и е: Пусть V м3 – объем бассейна, х м3 /ч – производительность подающей трубы, у м3 /ч - отводящей. Тогда V/x ч – время, необходимое подающей трубе для заполнения бассейна, V/у ч – время, необходимое отводящей на осушение бассейна. По условию задачи
V/x- V/у=2.
Так как производительность отводящей трубы больше производительности наполняющей, то при включенных обеих трубах будет происходить осушение бассейна и одна треть бассейна осушится за время (V/3)(у-х), которое по условию задачи равно 8 ч. Итак, условие задачи может быть записано в виде системы двух уравнений с тремя неизвестными:
В задаче необходимо найти V/х и V/у. Выделим в уравнениях комбинацию неизвестных V/х и V/у, записав систему в виде: V/x-V/y=2, V/(y-x)=24 или V/x-V/y=2, y/V-x/V=1/24
Вводя новые неизвестные V/х=а и V/у=b, получаем следующую систему: a-b=2, 1/b-1/a=1/24
Подставляя во второе уравнение выражение a=b+2, имеем уравнение относительно b: 1/b-1/(b+2)=1/24
решив которое найдем b1=6, b2=-8. Условию задачи удовлетворяют первый корень b1=6(ч). Из первого уравнения последней системы находим а=8(ч), т.е. первая труба наполняет бассейн за 8ч.
О т в е т: через первую трубу бассейн наполнится через 8 ч, через вторую трубу бассейн осушится через 6 ч.