Установим зависимость всех трех макроскопических параметров (P,V,T) к удобному виду, т. к. количество молекул N в процессе расчетов определить трудно. (1) PV/N=kT N - количество молекул; k - постоянная Больцмана; T - абсолютная температура. Na-число Авогадро (2)N = vNa v - число молей газа. (3) v=m/M m - масса газа. M - молярная масса газа Преобразуем уравнение (1) и решим систему:
За одну секунду свободного падения, шарик пролетит расстояние
h = gt2/2 (1) и столкнется с плитой. После отскока, шарик будет двигаться под углом α = 30о к перпендикуляру, восстановленному в точку падения, под таким же углом к горизонтальной оси. Чтобы тело оказалось на плоскости в точке падения шарика, его надо бросить из точки А со скоростью vo. Воспользуемся законом сохранения механической энергии mvo2/2 = mg(H − h) + mv2/2. (2) Скорость отскока шарика от плоскости, равна скорости его падения на плоскость v = gt, a v2 = g2t2. (3) Сделав замену в уравнение (2) выразим квадрат скорости vo vo2 = g2t2 + 2g(H − h). (4) Учтем, что горизонтальная составляющая скорости в процессе полета остается постоянной vx = vcos(90° − 2α) = vsin2α, (5) запишем закон сохранения для точки A и B mvo2/2 = mgh/ + mvx2/2. (6) Подставим (1), (3), (4) и (5) в формулу (6) и после преобразования получим формулу для искомой высоты h/ = H − (gt2/2)•sin22α Подставим численные значения и найдем искомую высоту h/ = 20 − (10•12/2)•sin260° = 16,25 (м).
(1) PV/N=kT N - количество молекул;
k - постоянная Больцмана;
T - абсолютная температура.
Na-число Авогадро
(2)N = vNa v - число молей газа.
(3) v=m/M
m - масса газа.
M - молярная масса газа
Преобразуем уравнение (1) и решим систему:
PV= N kT (4) PV = vNa kT ;
PV=(mNakT)/M;
Nak=R=8.31 ДЖ/мольК
R - универсальная (молярная) газовая постоянная.
PV=(mRT)/M - уравнение состояния для произвольной массы газа, уравнение Менделеева - Клапейрона.
За одну секунду свободного падения, шарик пролетит расстояние
h = gt2/2 (1)и столкнется с плитой. После отскока, шарик будет двигаться под углом α = 30о к перпендикуляру, восстановленному в точку падения, под таким же углом к горизонтальной оси. Чтобы тело оказалось на плоскости в точке падения шарика, его надо бросить из точки А со скоростью vo. Воспользуемся законом сохранения механической энергии
mvo2/2 = mg(H − h) + mv2/2. (2)
Скорость отскока шарика от плоскости, равна скорости его падения на плоскость
v = gt, a v2 = g2t2. (3)
Сделав замену в уравнение (2) выразим квадрат скорости vo
vo2 = g2t2 + 2g(H − h). (4)
Учтем, что горизонтальная составляющая скорости в процессе полета остается постоянной
vx = vcos(90° − 2α) = vsin2α, (5)
запишем закон сохранения для точки A и B
mvo2/2 = mgh/ + mvx2/2. (6)
Подставим (1), (3), (4) и (5) в формулу (6) и после преобразования получим формулу для искомой высоты
h/ = H − (gt2/2)•sin22α
Подставим численные значения и найдем искомую высоту
h/ = 20 − (10•12/2)•sin260° = 16,25 (м).