Укажите в каких процессах (изобарном, изохорном и адиабатиче-
ском) газу потребуется сообщить наибольшее и наименьшее количе-
ство тепла (с пояснением), если он нагревается от температуры Т1 до температуры Т2:
а) наибольшее – при изобарном, наименьшее – при изохорном;
б) наибольшее – при изохорном, наименьшее – при адиабатическом;
в) наибольшее – при изобарном, наименьшее – при адиабатическом;
г) наибольшее – при адиабатическом, наименьшее – при изохорном.
Согласно условию скорость зависит от угла поворота $v(\phi)=\frac{\phi}{2\pi}*V$
Нормально ускорение: $a_n=\frac{v^2}{R}$
а) $\phi=2\pi$ $a_n=\frac{V^2}{R}$
б) $\phi=\pi$ $v(\phi)=\frac{\pi}{2\pi}*V=\frac{V}{2}$ $a_n=\frac{V^2}{4R}$
в) $\phi=\frac{\pi}{2}$ $v(\phi)=\frac{\frac{pi}{2}}{2\pi}*V=\frac{V}{4}$
$a_n=\frac{V^2}{16R}$
г) $\phi=\frac{\pi}{3}$ $v(\phi)=\frac{\frac{pi}{3}}{2\pi}*V=\frac{V}{6}$
$a_n=\frac{V^2}{36R}$
д) $\phi=0$ $a_n=0$
Тангенциальное ускорение:
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Тангенциальное ускорение $a_{tau}=\frac{V-0}{2\pi}=\frac{V}{2\pi}$
Оно будет постоянным для всего оборота $a_{tau}=\frac{V}{2*3,14}\approx 0,16V$
а) $\phi=2\pi$ $a_{tau}\approx 0,16V$
б) $\phi=\pi$ $a_{tau}\approx 0,16V$
в) $\phi=\frac{\pi}{2}$ $a_{tau}\approx 0,16V$
г) $\phi=\frac{\pi}{3}$ $a_{tau}\approx 0,16V$
д) $\phi=0$ $a_{tau}\approx 0,16V$
Полное ускорение: $a=\sqrt{a_n^2+a_{\tau}^2}$
а) $\phi=2\pi$ $a=\sqrt{(\frac{V^2}{R})^2+(0,16V)^2}$
б) $\phi=\pi$ $a=\sqrt{(\frac{V^2}{4R})^2+(0,16V)^2}$
в) $\phi=\frac{\pi}{2}$ $a=\sqrt{(\frac{V^2}{16R})^2+(0,16V)^2}$
г) $\phi=\frac{\pi}{3}$ $a=\sqrt{(\frac{V^2}{36R})^2+(0,16V)^2}$
д) $\phi=0$ $a=\sqrt{(0,16V)^2}=0,16V$
Г= f / d, (1)
где
f - расстояние до изображения предмета
d - расстояние до предмета,
тогда f = Г·d:
По формуле тонкой линзы:
1/F = 1/d + 1/f или
1/F =f·d / (f +d)
1/F = Г·d*d / (Г·d+d) = Г·d / (Г+1) (1)
После того, как предмет приблизили к линзе d1 = d-1;
f1= (f+x); Г1 = f1 / d1 ; f1 = Г1·d1
Рассуждая аналогично, ка было сделано выше получаем:
1/F = 1/d1 + 1/f1 или
1/F = f1*d1 / (f1+d2)
1/F = Г1·d1·d1 / (Г1·d1 + d1) = Г1·d1 / (Г1 +1) (2)
Поскольку фокус НЕ ИЗМЕНИЛСЯ, то приравниваем (1) и (2) с учетом данных по условию задачи:
2·d / (2+1) = 4·(d-1) / (4+1)
d = 6 см
f = 12 см
d1 = 5
f2 = 4·5 = 20 см
Было f = 12 см , стало f1 = 20 см
Экран передвинули на 20-12 = 8 см
ответ: 8 сантиметров