Предпочтительнее тот при использовании которого на подъём придётся затратить меньшее время. Пусть l м - длина эскалатора, тогда при использовании первого Антону придётся преодолеть расстояние 3l/4 м со скоростью 3-1=2 м/с. Отсюда время подъёма t1=(3l/4)/2=3l/8 с. При использовании второго Антон сначала пробежит вниз по эскалатору расстояние l/4 м со скоростью 3+1=4 м/с, на что уйдёт время t2=(l/4)/4=l/16 с. Затем Антон пробежит вверх по эскалатору расстояние l с той же скоростью 4 м/с, на что уйдёт время t3=l/4 с. Таким образом, при использовании второго время до подъёма составит t2+t3=l/16+l/4=5l/16 с. Так как 3l/8=6l/16>5l/16, то t1>t2+t3. Значит, предпочтительнее второй
Рассмотрим твердое тело, как некую систему (рис. 6.1), состоящую из n точек (m1, m2, ..., mn); – радиус-вектор i-й точки, проведенный из точки О – центра неподвижной инерциальной системы отсчета. Введем обозначения: – внешняя сила, действующая на i-ю точку, – сила действия со стороны k-й точки на i-ю. Рис. 6.1 Запишем основное уравнение динамики для точки (см. п. 3.6):Умножим обе части этого уравнения векторно на :Знак производной можно вынести за знак векторного произведения (и знак суммы тоже), тогда Векторное произведение вектора точки на её импульс называется моментом импульса (количества движения) этой точки относительно точки О. . (6.1.1) Эти три вектора образуют правую тройку векторов, связанных «правилом буравчика» (рис. 6.2). Рис. 6.2 Векторное произведение , проведенного в точку приложения силы, на эту силу, называется моментом силы : . (6.1.2) Обозначим Li – плечо силы Fi, (рис. 6.3). Учитывая тригонометрическое тождество, получаем . (6.1.3) Рис. 6.3C учетом новых обозначений: . (6.1.4) Запишем систему n уравнений для всех точек системы и сложим их левые и правые части:Здесь сумма производных равна производной суммы:где – момент импульса системы, – результирующий момент всех внешних сил относительно точки О. Так как, то Отсюда получим основной закон динамики вращательного движения твердого тела, вращающегося вокруг точки. . (6.1.5) Момент импульса системы является основной динамической характеристикой вращающегося тела. Сравнивая это уравнение с основным уравнением динамики поступательного движения (3.6.1), мы видим их внешнее сходство.
Введем обозначения: – внешняя сила, действующая на i-ю точку, – сила действия со стороны k-й точки на i-ю.
Рис. 6.1 Запишем основное уравнение динамики для точки (см. п. 3.6):Умножим обе части этого уравнения векторно на :Знак производной можно вынести за знак векторного произведения (и знак суммы тоже), тогда Векторное произведение вектора точки на её импульс называется моментом импульса (количества движения) этой точки относительно точки О. . (6.1.1) Эти три вектора образуют правую тройку векторов, связанных «правилом буравчика» (рис. 6.2).
Рис. 6.2 Векторное произведение , проведенного в точку приложения силы, на эту силу, называется моментом силы : . (6.1.2) Обозначим Li – плечо силы Fi, (рис. 6.3).
Учитывая тригонометрическое тождество, получаем . (6.1.3)
Рис. 6.3C учетом новых обозначений: . (6.1.4) Запишем систему n уравнений для всех точек системы и сложим их левые и правые части:Здесь сумма производных равна производной суммы:где – момент импульса системы, – результирующий момент всех внешних сил относительно точки О.
Так как, то Отсюда получим основной закон динамики вращательного движения твердого тела, вращающегося вокруг точки. . (6.1.5) Момент импульса системы является основной динамической характеристикой вращающегося тела.
Сравнивая это уравнение с основным уравнением динамики поступательного движения (3.6.1), мы видим их внешнее сходство.