V=10 m/s k=600 Nm
2 kg
:
A 2 kg object is launched at a velocity of v=10 m/s
towards a spring with a spring constant of k=600
N/m, as shown in the figure. Calculate
a) the compression of the spring at the moment the
velocity of the object is 5 m/s,
b) the maximum amount of compression of the
spring. (Neglect any friction effects.)
2
3
Q1=C*m*(dT), где С - удельная теплоёмкость свинца, m - масса свинца, dT=Tp-T1 разница между температурой плавления (Tp) и текущей температурой свинца (T1=403 К =130 Цельсия).
Q2=A*m, где A - удельная теплота плавления свинца.
Эта энергия Q должна составлять 90% от кинетической энергии пули E=0.5mv^2. То есть получили уравнение 0.9*0.5mv^2=Q; Отсюда находим минимальную скорость пули:
v=SQRT(Q/(0.45m));
v=SQRT((C*m*(dT)+A*m)/(0.45m));
v=SQRT((C*(dT)+A)/(0.45));
v=SQRT((C*(Tp-T1)+A)/(0.45));
Осталось подставить значения (смотри в справочнике)