В центре скамьи Жуковского стоит человек и держит в руках вертикально тонкий однородный стержень массой m и длиной l так, что центр масс человека со стержнем находится на оси вращения скамьи. Платформа (скамья) массой m1, представляющая собой сплошной диск радиуса R, вращается с угловой скоростью вокруг вертикальной оси. Определить: угловую скорость, с которой будет вращаться система, если человек перейдет на край платформы, не меняя положение стержня. Считать человека массой m3=60,0 кг материальной точкой по сравнению с размерами платформы; m=4,0 кг, m1=150,0 кг, 1=6,0 рад/с;
Объяснение:
Дано:
m1 = 0,2 кг
m2 = 0,3 кг
ал = 1,2 м/с2
g = 10 м/с2

По условию задачи нить невесома и нерастяжима. Массой блока пренебрегаем. Тогда
 и .
Расставим силы, действующие на грузы, и запишем для каждого тела свое уравнение динамики. В скалярной форме (с учетом, что Т1 = Т2 = Т):
Т – m1g = m1(a + a л); (1)
Р = ?
Т – m2g = m2(aл – а). (2)
; Fупр = 2Т.
Решаем систему уравнений относительно силы натяжения Т:
 Þ . (3)
 Þ . (4)
Выразим из уравнений (3) и (4) ускорение а и приравняем их друг другу:
,
,

 Þ
.
Тогда показания динамометра:
 (Н).
ответ: Р = 5,4 Н
делениями равно тогда мы можем выразить время, которое тратит жук на прохождение расстояния между
каждой парой делений:
Жук, как мы понимаем, сделал 4 остановки: после 2-ого, 4-ого, 6-ого и 8-ого делений на 1.5 секунды.
Значит полное время, которое он затратил на прохождение линейки равно:
Поскольку нам дана средняя скорость,
то мы можем определить длину L линейки Глюка, как:
Но с другой стороны, длина линейки Глюка, очевидно, равна поскольку мы изначальнго определили
как цену деления линейки Глюка. Стало быть:
см
ответ: 1.5 см.