Графики двух периодических функций (колебаний) одинаковой частоты задержаны (сдвинуты) один относительно другого. Задержка во времени эквивалентна соответствующей разности фаз.
Объяснение:
используя инструкцию реши:
Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).
Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению.[1]
Фаза колебания — гармоническое колебание (φ).
Величину φ, стоящую под знаком функции косинуса или синуса, называют фазой колебаний , описываемой этой функцией.
φ= ω៰t
Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений:
Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полная часто опускают.
Колебания с одинаковыми амплитудами и частотами могут различаться фазами. Так как ω៰=2π/Т , то φ= ω៰t = 2π t/Т.
Отношение t/Т указывает, сколько периодов от момента начала колебаний. Любому значению времени t, выраженному в числе периодов Т, соответствует значение фазы φ, выраженное в радианах. Так, по времени t=Т/4 (четверти периода) φ=π/2, по половины периода φ=π, по целого периодаφ=2π и т.д.
Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвиге аргумента (то есть фазы) на {\displaystyle \pi /2,} то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса, а не синуса.[2][3]
То есть, для колебательного процесса (см. выше) фаза (полная)
где {\displaystyle \omega } — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время; {\displaystyle \varphi _{0}} — начальная фаза (то есть фаза при t = 0); k — волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например, декартовых).
В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:
1 цикл = 2{\displaystyle \pi } радиан = 360 градусов.
В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.
Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические, а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координат r, в принципе — произвольная функция[4]:
Графики двух периодических функций (колебаний) одинаковой частоты задержаны (сдвинуты) один относительно другого. Задержка во времени эквивалентна соответствующей разности фаз.
Объяснение:
используя инструкцию реши:
Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).
Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению.[1]
Фаза колебания — гармоническое колебание (φ).
Величину φ, стоящую под знаком функции косинуса или синуса, называют фазой колебаний , описываемой этой функцией.
φ= ω៰t
Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений:
{\displaystyle A\cos(\omega t+\varphi _{0})},{\displaystyle A\sin(\omega t+\varphi _{0})},{\displaystyle Ae^{i(\omega t+\varphi _{0})}}.
Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида:
{\displaystyle A\cos(kx-\omega t+\varphi _{0})},{\displaystyle A\sin(kx-\omega t+\varphi _{0})},{\displaystyle Ae^{i(kx-\omega t+\varphi _{0})}},
для волны в пространстве любой размерности (например, в трехмерном пространстве):
{\displaystyle A\cos(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})},{\displaystyle A\sin(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})},{\displaystyle Ae^{i(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})}}.
Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полная часто опускают.
Колебания с одинаковыми амплитудами и частотами могут различаться фазами. Так как ω៰=2π/Т , то φ= ω៰t = 2π t/Т.
Отношение t/Т указывает, сколько периодов от момента начала колебаний. Любому значению времени t, выраженному в числе периодов Т, соответствует значение фазы φ, выраженное в радианах. Так, по времени t=Т/4 (четверти периода) φ=π/2, по половины периода φ=π, по целого периодаφ=2π и т.д.
Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвиге аргумента (то есть фазы) на {\displaystyle \pi /2,} то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса, а не синуса.[2][3]
То есть, для колебательного процесса (см. выше) фаза (полная)
{\displaystyle \varphi =\omega t+\varphi _{0}},
для волны в одномерном пространстве
{\displaystyle \varphi =kx-\omega t+\varphi _{0}},
для волны в трехмерном пространстве или пространстве любой другой размерности:
{\displaystyle \varphi =\mathbf {k} \mathbf {r} -\omega t+\varphi _{0}},
где {\displaystyle \omega } — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время; {\displaystyle \varphi _{0}} — начальная фаза (то есть фаза при t = 0); k — волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например, декартовых).
В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:
1 цикл = 2{\displaystyle \pi } радиан = 360 градусов.
В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.
Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические, а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координат r, в принципе — произвольная функция[4]:
{\displaystyle \varphi =\varphi (\mathbf {r} ,t).}
Объяснение:
~ 8 ~
вигляді графіків і таблиць) відображаються на екрані комп’ютера;
розширюється коло можливих самостійних експериментів творчого
характер; формуються навички дослідницької діяльності.
Використання ЦВКК в освітньому процесі націлене на:
підвищення рівня мотивації та пізнавальної активності учнів;
формування готовності учнів використовувати свої знання в
реальних життєвих ситуаціях (вивчати реальний світ, моделюючи
різні процеси); реалізацію завдань інтелектуально-спрямованої
педагогіки як засобу розвитку і саморозвитку учнів в ІКТ-
насиченому середовищі; зміну в взаємодії між школярами і
педагогами в ході спільної урочної й позаурочної діяльності.
Серед основних переваг роботи з цифровим обладнанням
слід виділити для вчителя: скорочення часу на підготовку і
проведення лабораторних і практичних робіт з фізики (за умови
наявності у вчителя достатнього досвіду роботи з цифровими
пристроями), розширення спектра лабораторних і практичних робіт
з різних тем як в рамках планування урочної так і позаурочній
діяльності, можливість розробки авторських проектів
лабораторних робіт і демонстраційних експериментів; для учнів:
можливість розкриття творчого потенціалу в рамках уроків
природничого циклу, а також в дослідницькій діяльності;
можливість підвищення рівня знань в процесі активної діяльності в
ході експериментально-дослідницької роботи на уроках фізики.
Використання цифрових датчиків надає можливості
педагогам й учням проводити широкий спектр досліджень,
демонстраційних і лабораторних робіт, а також здійснювати
науково-дослідні проекти, що сприяють вирішенню
міжпредметних задач.
В рамках даного посібника реалізується завдання розкриття
основних напрямків застосування ЦВКК, а також ознайомлення
педагогів з прикладами реалізації комплексів в різних формах і
видах діяльності. Вчителі фізики отримають можливість
ознайомитися з прикладами розробки змісту окремих дослідів,
проведення яких можливе на базі використання ЦВКК,
лабораторних робіт, здійснення яких утруднено при використанні
традиційного обладнання або точність отриманих даних
недостатня для вирішення задач навчання. Методичні
рекомендації дозволять учителю самостійно організовувати