В системе отсчета, связанной с конькобежцем, На него действуют силы: -сила тяжести mg, центробежная сила m(V^2)/R - обе приложены в центре тяжести -нормальная реакция, сила трения-обе приложены в точке контакта со льдом(эти силы не потребуются) Конькобежец находится в равновесии, когда равнодействующая силы тяжести и центробежной силы, проходит через точку контакта. Угол наклона этой равнодействующей и будет искомый. Теперь используем условие равновесия: сумма моментов всех сил должна быть равна нулю. Моменты находим относительно точки касания: mg*h*cosA+ [m(V^2)/R]*h*sinA=0 ctgA=(V^2)/Rg=10^2/30*10=1/3 А=72град. h-расстояние от центра тяжести до точки контакта.
N ≈ 1.57·10²³
Объяснение:
T = 315 K
<v> = 320 м/c
m = 20 г = 0,02 кг
Na = 6.022·10²³ 1/моль - постоянная Авогадро
R = 8.31 Дж/(моль·К) - универсальная газовая постоянная
N - ?
По закону Клапейрона-Менделеева
pV = νRT
(р - давление, V - объём, ν - количество вещества)
ν = N/Na
pV = NRT/Na (1)
Будем считать газ идеальным и одноатомным, тогда давление газа р можно вычислить как
р = nm₀<v>²/3 (n - концентрация, m₀ - масса молекулы)
n = N/V; m₀ = m/N
Тогда
nm₀ = m/V
р = m<v>²/3V
и
pV = m<v>²/3 (2)
Приравняем правые части уравнений (1) и (2)
NRT/Na = m<v>²/3
и выразим отсюда N
N = m<v>²Na/3RT
N = 0.02 · 320² · 6.022·10²³ : (3 · 8.31 · 315)
N ≈ 1.57·10²³
-сила тяжести mg, центробежная сила m(V^2)/R - обе приложены в центре тяжести
-нормальная реакция, сила трения-обе приложены в точке контакта со льдом(эти силы не потребуются)
Конькобежец находится в равновесии, когда равнодействующая силы тяжести и центробежной силы, проходит через точку контакта. Угол наклона этой равнодействующей и будет искомый.
Теперь используем условие равновесия: сумма моментов всех сил должна быть равна нулю. Моменты находим относительно точки касания:
mg*h*cosA+ [m(V^2)/R]*h*sinA=0
ctgA=(V^2)/Rg=10^2/30*10=1/3 А=72град.
h-расстояние от центра тяжести до точки контакта.