В каких случаях Землюможно посчитать материальной точкой. а) пРИ РАСЧЕТЕ ДЛИННЫ ЭКВАТОРА Земли
б) При расчете пути, пройденного Землей по орбите за пол года
с) При расчете расстояния от Земли до Солнца
д) При расчете траектории полета самолета над горной местностью
, очень нужно!
f(υ) = 4πυ² √[ ( μ/(2πRT) )³ ] exp( -μυ²/(2RT) ) ;
Средняя скорость по Максвеллу:
<υ> = √[ 8RT/(πμ) ] ;
Тогда:
<υ>² = 8RT/(πμ) ;
И:
f(<υ>) = ( 32RT/μ ) √[ ( μ/(2πRT) )³ ] exp( -4/π ) ;
f(<υ>) = ( 16/π ) √[ μ/(2πRT) ] exp( -4/π ) ;
Отсюда доля частиц со скоростями от <υ> до <υ>+Δυ, где Δυ=2 м/с, составит:
δ = f(<υ>) Δυ = ( 16Δυ/π ) √[ μ/(2πRT) ] exp( -4/π ) ;
δ ≈ ( 16*2/π ) √[ 0.028/(5000π) ] exp( -4/π ) ≈ 0.0038 = 0.38 % .
f(v) = 4πv² √[ ( μ/(2πRT) )³ ] exp( -μv²/(2RT) ) ;
Средняя скорость по Максвеллу:
<υ> = √[ 8RT/(πμ) ] ;
Тогда:
<υ>² = 8RT/(πμ) ;
И:
f(<υ>) = ( 32RT/μ ) √[ ( μ/(2πRT) )³ ] exp( -4/π ) ;
f(<υ>) = ( 16/π ) √[ μ/(2πRT) ] exp( -4/π ) ;
Отсюда доля частиц со скоростями от <υ> до <υ>+Δυ, где Δυ=2 м/с, составит:
δ = f(<υ>) Δυ = ( 16Δυ/π ) √[ μ/(2πRT) ] exp( -4/π ) ;
δ ≈ ( 16*2/π ) √[ 0.028/(5000π) ] exp( -4/π ) ≈ 0.0038 = 0.38 % .