В катушке с площадью поперечного сечения 5 см2 индукция однородного магнитного поля равномерно уменьшается от 200 до 50 мТл за 5 мс. Линии магнитной индукции параллельны оси катушки.
а) Определите изменение магнитного потока в катушке.
б) Чему равна ЭДС индукции, возникшей в катушке, если в ней 500 витков?
в) Чему равна сила индукционного тока, возникшего в катушке? Катушка изготовлена из медного провода с площадью поперечного сечения 0,25 мм2. Удельное сопротивление меди 1,7*10-8 Ом м.
надеюсь провельно вот
1.
Вычисли массу ядра изотопа Pd. Известно, что нейтронов в ядре изотопа на k = 2меньше, чем протонов. Определи зарядовое и массовое число изотопа.
Массу одного нуклона можно принять равной m1 = 1,67⋅10−27 кг
(Массу вычисли с точностью до сотых).
ответ: ядро изотопа [дробь ]Pd имеет массу m = ? кг.
2. Вычисли удельную энергию связи ядра изотопа азота N715, если дефект массы ядра иона
Δm= 0,12013 а. е. м.
(ответ запиши с точностью до сотых).
ответ: f = МэВ.
3. Определи правильный вариант.
Массовое число близко к массе ядра, выраженной в
а. е. м.
кг
МэВ
мг
4. Определи, чему равны зарядовое и массовое число изотопа B59.
A — [массовое/зарядовое]
число, A=;
Z — [массовое/зарядовое]
число, Z=.
5. Вычисли массу ядра изотопа I. Известно, что нейтронов в ядре изотопа на k = 3больше, чем протонов. Определи зарядовое и массовое число изотопа.
Массу одного нуклона можно принять равной m1 = 1,67⋅10−27 кг
(Массу вычисли с точностью до сотых).
ответ: ядро изотопа [дробь] I , имеет массу m = ? кг.
6. Вычислите энергию связи нуклонов в ядре атома изотопа фтора F916.
Масса ядра изотопа фтора равна m = 16,011467 а. е. м.
Масса свободного протона равна mp = 1,00728 а. е. м.
Масса свободного нейтрона равна mn = 1,00866 а. е. м.
(ответ запиши с точностью до десятых).
ответ: ΔE = МэВ.
Объяснение:
Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем.
Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов.
Далее находим объем
А затем выражаем среднюю плотность
[г/см³]
Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен
их сумме.
[см³]
[см³]
Суммарный объем:
[см³]
А плотность сплава соответственно:
[г/см³]
Значит пустоты есть.
И объем этой пустоты равен разности объема кубика и суммарного объема сплава
[см³]