В под давлением 1 МПа находится газовая смесь из кислорода и азота. Считая, что масса азота составляет 80 % от массы смеси, определить парциальные давления отдельных газов.
Сначала нужно выяснить, каков радиус орбиты геостационарного спутника. Так как,
по определению, это спутник, все время находящийся над одной и той же точкой земной
поверхности, то спутник движется по круговой орбите в плоскости экватора Земли, а его
период обращения по орбите равен периоду вращения Земли, т.е. 1 суткам. Воспользовавшись
3-м законом Кеплера, сравним движение спутника и Луны вокруг Земли:
a$
r
3
= P
2
$,
где r — радиус орбиты спутника (в км), a$ — большая полуось орбиты Луны (в км), P$ —
период обращения Луны (в сутках). Отсюда получаем, что
a$
r
≈ (
√3
27)2 = 9.
Так как a$ ≈ 384 тыс. км, то r ≈ 43 тыс. км.
Известно, что на расстоянии орбиты Луны размер земной тени больше размеров Луны
(т.к. полные (теневые) лунные затмения довольно продолжительны), а радиус Луны примерно в 4 раза меньше радиуса Земли. Исходя из этого, для оценки размеров земной тени
на расстоянии, в 9 раз меньшем размеров лунной орбиты, мы можем приближенно считать
тень цилиндром, а не конусом, т.е. предполагать, что размер земной тени равен размеру
Земли — примерно 13 тыс. км. Так как ширина тени мала по сравнению с длиной орбиты,
для оценки можно считать путь спутника внутри тени отрезком прямой. Длина орбиты
спутника равна 2π · r ≈ 270 тыс. км. Это путь он проходит за 24 часа. Следовательно,
расстояние в 13 тыс. км спутник пройдет примерно за 1.2 часа
Условие задачи:
Определить среднюю квадратичную скорость молекул азота при температуре 27° C?
Задача №4.1.26 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
t=27∘ C, υкв−?
Решение задачи:
Среднюю квадратичную скорость молекул идеального газа υкв определяют по такой формуле:
υкв=3RTM−−−−−√
В этой формуле R — универсальная газовая постоянная, равная 8,31 Дж/(моль·К), M — молярная масса газа, равная у азота 0,028 кг/моль.
Переведем данную в условии температуру из шкалы Цельсия в шкалу Кельвина:
27∘C=300К
Посчитаем ответ:
υкв=3⋅8,31⋅3000,028−−−−−−−−−−−√=516,8м/с≈0,5км/с
ответ: 0,5 км/с.
Сначала нужно выяснить, каков радиус орбиты геостационарного спутника. Так как,
по определению, это спутник, все время находящийся над одной и той же точкой земной
поверхности, то спутник движется по круговой орбите в плоскости экватора Земли, а его
период обращения по орбите равен периоду вращения Земли, т.е. 1 суткам. Воспользовавшись
3-м законом Кеплера, сравним движение спутника и Луны вокруг Земли:
a$
r
3
= P
2
$,
где r — радиус орбиты спутника (в км), a$ — большая полуось орбиты Луны (в км), P$ —
период обращения Луны (в сутках). Отсюда получаем, что
a$
r
≈ (
√3
27)2 = 9.
Так как a$ ≈ 384 тыс. км, то r ≈ 43 тыс. км.
Известно, что на расстоянии орбиты Луны размер земной тени больше размеров Луны
(т.к. полные (теневые) лунные затмения довольно продолжительны), а радиус Луны примерно в 4 раза меньше радиуса Земли. Исходя из этого, для оценки размеров земной тени
на расстоянии, в 9 раз меньшем размеров лунной орбиты, мы можем приближенно считать
тень цилиндром, а не конусом, т.е. предполагать, что размер земной тени равен размеру
Земли — примерно 13 тыс. км. Так как ширина тени мала по сравнению с длиной орбиты,
для оценки можно считать путь спутника внутри тени отрезком прямой. Длина орбиты
спутника равна 2π · r ≈ 270 тыс. км. Это путь он проходит за 24 часа. Следовательно,
расстояние в 13 тыс. км спутник пройдет примерно за 1.2 часа