Считать будем в километрах в час для удобства.Если учитывать, что ускорения в начале и в конце пути разные, то выразим их из пути и скорости: a1=3200/S1; a2=3200/S2; Найдем общий путь: Vc=S/t; S=24 км; Запишем такую систему уравнений: 1)1/3=to+t3. to=t1+t2 2)24=S1+S2+80t3; 3)a1t1=a2t2; Опираясь на второе уравнение, выразим там все через a1t1, учитывая, что 80=a1t1; 48=a1t1(t1+2t2)-a2t2^2+2a1t1t3; 48=0.6a1t1; 0.6=t1+t2+2t3; Пришли в системе: 1)0.6=t1+t2+2t3; 2)1/3=t1+t2+t3; 1/15=t1+t2 то есть четыре минуты; Прировняем теплоту, полуденную смесью к теплоте, полученной отдельными компонентами: C(M1+2M2+3M3)delta T=1.5Rdetla T+5Rdelta T+9Rdelta T; 0.08C=129; C=1610 Дж/кг*К
1) При движении с горы на санки действует сталкивающая сила m*g*sin(30)=m*g/2=4,905*m и cила трения 0,1*m*g*cos(30)=0,05*m*g*sqrt(3)=0,85*m. Длина горы равна 5/sin(30)=10 м. При движении с горы движение санок подчиняется уравнению 4,905*m-0,85*m=m* dv/dt, где v- скорость движения саней. Отсюда 4,055*m=m*dv/dt или dv/dt=4,055. Решая это уравнение, находим v=4,055*t. Т.к. v=ds/dt, где s- расстояние от верха горы, то s=4,055*t*t/2. При s=10 м t=sqrt(20/4,055)= 2,22c - время спуска саней с горы. В конце спуска v=v0=4,055*2,22=9 м/с 2) движение по ровному участку есть движение под действием силы трения -0,85*m c начальной скоростью v0=9 м/с. По 2закону Ньютона, m*dv/dt=-0,85*m, Решая уравнение, находим v=v0-0,85*t=9-0,85*t. Приравнивая это выражение нулю, находим время до остановки саней t=9/0,85=10,59с. Но т.к. v=ds/dt, где s-пройденный по равнине путь, то s=v0*t-0,425*t*t = 9*t-0,425*t*t, что при t=10,59c даёт s= 95,31-47,66=47,65м
2) движение по ровному участку есть движение под действием силы трения -0,85*m c начальной скоростью v0=9 м/с. По 2закону Ньютона, m*dv/dt=-0,85*m, Решая уравнение, находим v=v0-0,85*t=9-0,85*t. Приравнивая это выражение нулю, находим время до остановки саней t=9/0,85=10,59с. Но т.к. v=ds/dt, где s-пройденный по равнине путь, то s=v0*t-0,425*t*t = 9*t-0,425*t*t, что при t=10,59c даёт s= 95,31-47,66=47,65м