Вблизи бесконечно длинного прямолинейного провода с током в одной плоскости с проводом расположены две одинаковые проводящие рамки. Сравнить взаимные индуктивности провода и рамки в положениях I и II.
Посадил дед репку. Выросла репка большая-пребольшая, тяжелая-претяжелая, разрослась она во все стороны, грунт потеснила. Пошел дед репку рвать. Тянет потянет – вытянуть не может. Силы ему не хватает: упирается репка, неровностями и выступами за землю цепляется, своему движению противится. Позвал дед бабку. Бабка за дедку, дедка за репку, тянут потянут – вытянуть не могут: крепко корень в грунте держится. Нет и вдвоем им не справиться.Позвала бабка внучку. Внучка за бабку, бабка за дедку, дедка за репку, тянут потянут – вытянуть не могут: все еще их общая сила тяги меньше той предельной силы, которая по поверхности соприкосновения репы с землей возникает. Силой трения покоя она называется.Позвала внучка Жучку. Тянут потянут – вытянуть не могут. Не хватает их общей силы справиться с силами тяжести репки и трением почвы.Позвала Жучка кошку. Кошка за Жучку, Жучка за внучку, внучка за бабку, бабка за дедку, тянут потянут – вытянуть не могут: на самую малость, но все же меньше внешняя сила оказалась, чем сила тяжести репки и сила трения между почвой и репкой.Позвала кошка мышку. Стали все вместе тянуть и вытащили репку.Только не подумайте, что маленькая мышка сильнее всех оказалась! Ее маленькая сила к общей силе тяги добавилась, и теперь результирующая сила даже превысила силу тяжести репки и силу трения.
Уравнение координаты по y (т.е высоты) для движения в поле тяготения
y=v0*t-gt^2*1/2*sin возьмем такую систему отсчета, что мяч бросают с y=0, тогда кагбе когда он упадет он будет в такой же y=0 переписываем и подставляем в уравнение 10t-10(g я взял как 10)t^2*1/2 * 1/2 (sin30=1/2)=0 (поскольку он вернулся на такую же высоту, что я уже писал выше, а Y это и есть координата высоты) решаем через дискриминант корни такого уравнения 1 и 0 (ну 0 либо сторонний либо кгабе если ты берешь отсчет времени когда бросаешь ) ответ 1с
y=v0*t-gt^2*1/2*sin
возьмем такую систему отсчета, что мяч бросают с y=0, тогда кагбе когда он упадет он будет в такой же y=0
переписываем и подставляем в уравнение
10t-10(g я взял как 10)t^2*1/2 * 1/2 (sin30=1/2)=0 (поскольку он вернулся на такую же высоту, что я уже писал выше, а Y это и есть координата высоты)
решаем через дискриминант
корни такого уравнения 1 и 0 (ну 0 либо сторонний либо кгабе если ты берешь отсчет времени когда бросаешь )
ответ 1с