Велосипедист и бегун начинают равномерно и прямолинейно двигаться вдоль дороги из одной точки. Скорость велосипедиста равна 20 км/ч, а скорость бегуна равна 10 км/ч. Дозаполните таблицу для экспериментальных данных. Постройте графики зависимости координаты физических тел от времени, используя одну систему координат.
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
n1
f = qe = 1,6 × 10^-19 × 2 × 10^3 = 3,2 × 10^-16 н
n2
a = qed cosα = qed cos300° = qed cos(-60°) = qed cos60° = qed/2 = 5 × 10^-9 × 2 × 10^3 × 2 × 10^-1/2 = 10^4 × 10^-10 = 10^-6 дж = 1 мкдж
n3
c = q/u
u = ed
c = q/ed = 5 × 10^-9/(10^4 × 2 × 10^-4) = 2,5 × 10^-9 ф = 2,5 нф
n4
w1 = c1 (u1)^2/2 = 3 × 10^-6 × 100/2 = 1,5 × 10^-4 дж
w2 = (c1 + c2)(u2)^2/2
w2 = 5 × 10^-6 × (u2)^2/2
w2 = w1
5 × 10^-6 × (u2)^2/2 = 1,5 × 10^-4
(u2)^2 = 3 × 10^-4/5 × 10^-6
(u2)^2 = 60
u2 = 7,75 в
q = w
q = 1,5 × 10^-4 дж
ответ : 7,75 в ; 1,5 × 10^-4 дж
Согласно условию скорость зависит от угла поворота $v(\phi)=\frac{\phi}{2\pi}*V$
Нормально ускорение: $a_n=\frac{v^2}{R}$
а) $\phi=2\pi$ $a_n=\frac{V^2}{R}$
б) $\phi=\pi$ $v(\phi)=\frac{\pi}{2\pi}*V=\frac{V}{2}$ $a_n=\frac{V^2}{4R}$
в) $\phi=\frac{\pi}{2}$ $v(\phi)=\frac{\frac{pi}{2}}{2\pi}*V=\frac{V}{4}$
$a_n=\frac{V^2}{16R}$
г) $\phi=\frac{\pi}{3}$ $v(\phi)=\frac{\frac{pi}{3}}{2\pi}*V=\frac{V}{6}$
$a_n=\frac{V^2}{36R}$
д) $\phi=0$ $a_n=0$
Тангенциальное ускорение:
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Тангенциальное ускорение $a_{tau}=\frac{V-0}{2\pi}=\frac{V}{2\pi}$
Оно будет постоянным для всего оборота $a_{tau}=\frac{V}{2*3,14}\approx 0,16V$
а) $\phi=2\pi$ $a_{tau}\approx 0,16V$
б) $\phi=\pi$ $a_{tau}\approx 0,16V$
в) $\phi=\frac{\pi}{2}$ $a_{tau}\approx 0,16V$
г) $\phi=\frac{\pi}{3}$ $a_{tau}\approx 0,16V$
д) $\phi=0$ $a_{tau}\approx 0,16V$
Полное ускорение: $a=\sqrt{a_n^2+a_{\tau}^2}$
а) $\phi=2\pi$ $a=\sqrt{(\frac{V^2}{R})^2+(0,16V)^2}$
б) $\phi=\pi$ $a=\sqrt{(\frac{V^2}{4R})^2+(0,16V)^2}$
в) $\phi=\frac{\pi}{2}$ $a=\sqrt{(\frac{V^2}{16R})^2+(0,16V)^2}$
г) $\phi=\frac{\pi}{3}$ $a=\sqrt{(\frac{V^2}{36R})^2+(0,16V)^2}$
д) $\phi=0$ $a=\sqrt{(0,16V)^2}=0,16V$