С высоты H=30 м свободно падает стальной шарик. При падении он сталкивается с неподвижной плитой, плоскость которой наклонена под углом 30 градусов к горизонту, и взлетает на высоту h=15 м на поверхностью Земли. Каково время падения шарика до удара о плиту? Удар шарика считать абсолютно упругим. ормулами с движением можно обойтись? Видимо, все же нельзя. По крайней мере у меня не получилось. Придется писать закон сохранения энергии, причем дважды. Тогда вы получите не достающий параметр. Высоту столкновения шарика с плитой. При большом желании, можно обойтись и одним законом сохранения. Но это на много менее удобно. 1) Пусть в момент сразу после удара скорость шарика V, а высота столкновения шарика и плиты x. Угол между вектором V и горизонтом (осью ОХ) составит 90-2*30 = 30 градусов. Vx = V*cos30 Vy = V*sin30 0.5mV^2 + mgx = 0.5m(Vx)^2 + mgh 0.5mV^2*sin^2(30)=mg(h-x) (1) 2) Найдем скорость в момент удара 0.5mV^2 = mg(H-x) (2) Подставив (2) в (1) получим mg(H-x)*sin^2(30) = mg(h-x) Найдем х, подставим в (2) и найдем V. Зная V найдем время из уравнения движения
на основании закона сохранения и превращения энергии составим уравнение:
wк1+wp1=wk2+wp2, где wк1, wp1 -кинетическая и потенциальная энергия шарика, находящегося на высоте h на наклонной плоскости; wк2, wp2 - кинетическая и потенциальная энергия шарика у основания наклонной плоскости.
нулевой уровень потенциальной энергии совместим с основанием наклонной плоскости. тогда
wp1 = mgh+q1*q2/4*pi*e0*h
wk1 = 0
второе слагаемое в выражении для wpl представляет собой потенциальную энергию, обусловленную взаимным расположением зарядов q1 и q2. пусть υ — скорость шарика у основания наклонной плоскости. тогда
wk2=m*v^2/2.
в это время расстояние между , как видно из рисунка, равно h/tgα. поэтому
wp2 = q1*q2*tga/4*pi*e0*h
с учетом этих значений энергии уравнение первое примет вид:
ормулами с движением можно обойтись?
Видимо, все же нельзя. По крайней мере у меня не получилось.
Придется писать закон сохранения энергии, причем дважды.
Тогда вы получите не достающий параметр. Высоту столкновения шарика с плитой.
При большом желании, можно обойтись и одним законом сохранения. Но это на много менее удобно.
1) Пусть в момент сразу после удара скорость шарика V, а высота столкновения шарика и плиты x. Угол между вектором V и горизонтом (осью ОХ) составит 90-2*30 = 30 градусов.
Vx = V*cos30
Vy = V*sin30
0.5mV^2 + mgx = 0.5m(Vx)^2 + mgh
0.5mV^2*sin^2(30)=mg(h-x) (1)
2) Найдем скорость в момент удара
0.5mV^2 = mg(H-x) (2)
Подставив (2) в (1) получим
mg(H-x)*sin^2(30) = mg(h-x)
Найдем х, подставим в (2) и найдем V.
Зная V найдем время из уравнения движения
ответ:
объяснение:
на основании закона сохранения и превращения энергии составим уравнение:
wк1+wp1=wk2+wp2, где wк1, wp1 -кинетическая и потенциальная энергия шарика, находящегося на высоте h на наклонной плоскости; wк2, wp2 - кинетическая и потенциальная энергия шарика у основания наклонной плоскости.
нулевой уровень потенциальной энергии совместим с основанием наклонной плоскости. тогда
wp1 = mgh+q1*q2/4*pi*e0*h
wk1 = 0
второе слагаемое в выражении для wpl представляет собой потенциальную энергию, обусловленную взаимным расположением зарядов q1 и q2. пусть υ — скорость шарика у основания наклонной плоскости. тогда
wk2=m*v^2/2.
в это время расстояние между , как видно из рисунка, равно h/tgα. поэтому
wp2 = q1*q2*tga/4*pi*e0*h
с учетом этих значений энергии уравнение первое примет вид:
mgh+q1*q2/4*pi*e0*h = m*v^2/2 + q1*q2*tga/4*pi*e0*h
отсюда найдем скорость:
v = √2h+q1*q2*tga/2*pi*m*e0*h(1-tga)