Начнем с того, что годичный паралакс звезды из себя представляет угол (π), под которым большая полуось земной орбиты видна с расстояния (r) до этой звезды.
Соответственно, вся суть измерения расстояния до звезд с метода годичного параллакса заключается я в движении Земли по орбите вокруг Солнца. Если мы знаем расстояние от Земли до Солнца, напомню, что оно равно 1 а.е., также паралаксическое смещение звезды за полгода. Которое несложно определить при наблюдении смещения данной звезды на фоне очень далеких звезд, смещением которых можно пренебречь. То расстояние до звезды (r) можно определить из тригонометрии как r=a/sin(π). Где a - радиус земной орбиты.
Если же выражать расстояние до звезд в а.е., то мы из нехитрых соображений, также тригонометрии, получим выражение r = 206265''/π''. (Докажите это самостоятельно)
Но так как в действительности большинство звезд удалены от нас на огромные расстояния, то угол π получается чрезвычайно маленьким и измеряется десятыми, а то и даже сотыми долями секунды дуги. Соответственно такие единицы измерения как метр, километр или даже астрономическая единица для для определения расстояния до звезд слишком малы. Поэтому для измерения расстояния до звезд используют специальную единицу измерения: парсек - это расстояние, с которого радиус земной орбиты был бы виден под углом в 1''. Действительно, такая единица измерения будет очень удобна при вычислениях. К тому же, получается что 1 пк = 206265 а.е., тогда формула для определения расстояния до звезд в парсеках упрощается до r=1/π''. В этом и состоит вся суть определения расстояний до некоторых звезд, используя их годичный паралакс.
Опыт 1 (рис. 179, а). Если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При изменении полюсов магнита направление отклонения стрелки изменится. Для получения индукционного тока магнит можно оставлять неподвижным, тогда нужно относительно магнита передвигать соленоид.
Опыт II. Концы одной из катушек, вставленных одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. Отклонение стрелки гальванометра наблюдается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга (рис. 179, б). Направления отклонений стрелки гальванометра также противоположны при включении и выключении тока, его увеличении и уменьшении, сближении . и удалении катушек. Обобщая результаты своих многочисленных опытов, Фарадей пришел к выводу, что индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также возникает индукционный ток. В данном случае индукция магнитного поля вблизи проводника остается постоянной, а меняется только поток магнитной индукции через площадь контура. Опытным путем было также установлено, что значение индукционного тока совершенно не зависит от изменения потока магнитной индукции, а определяется лишь скоростью его изменения (в опытах Фарадея также доказывается, что отклонение стрелки гальванометра (сила тока) тем больше, чем больше скорость движения магнита, или скорость изменения силы тока, или скорость движения катушек).
Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получения электрического тока с магнитного поля. Этим была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило в дальнейшем толчком для разработки теории электромагнитного поля.
Начнем с того, что годичный паралакс звезды из себя представляет угол (π), под которым большая полуось земной орбиты видна с расстояния (r) до этой звезды.
Соответственно, вся суть измерения расстояния до звезд с метода годичного параллакса заключается я в движении Земли по орбите вокруг Солнца. Если мы знаем расстояние от Земли до Солнца, напомню, что оно равно 1 а.е., также паралаксическое смещение звезды за полгода. Которое несложно определить при наблюдении смещения данной звезды на фоне очень далеких звезд, смещением которых можно пренебречь. То расстояние до звезды (r) можно определить из тригонометрии как r=a/sin(π). Где a - радиус земной орбиты.
Если же выражать расстояние до звезд в а.е., то мы из нехитрых соображений, также тригонометрии, получим выражение r = 206265''/π''. (Докажите это самостоятельно)
Но так как в действительности большинство звезд удалены от нас на огромные расстояния, то угол π получается чрезвычайно маленьким и измеряется десятыми, а то и даже сотыми долями секунды дуги. Соответственно такие единицы измерения как метр, километр или даже астрономическая единица для для определения расстояния до звезд слишком малы. Поэтому для измерения расстояния до звезд используют специальную единицу измерения: парсек - это расстояние, с которого радиус земной орбиты был бы виден под углом в 1''. Действительно, такая единица измерения будет очень удобна при вычислениях. К тому же, получается что 1 пк = 206265 а.е., тогда формула для определения расстояния до звезд в парсеках упрощается до r=1/π''. В этом и состоит вся суть определения расстояний до некоторых звезд, используя их годичный паралакс.
ответ я нашел в интернете
Опыт 1 (рис. 179, а). Если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При изменении полюсов магнита направление отклонения стрелки изменится. Для получения индукционного тока магнит можно оставлять неподвижным, тогда нужно относительно магнита передвигать соленоид.
Опыт II. Концы одной из катушек, вставленных одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. Отклонение стрелки гальванометра наблюдается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга (рис. 179, б). Направления отклонений стрелки гальванометра также противоположны при включении и выключении тока, его увеличении и уменьшении, сближении . и удалении катушек. Обобщая результаты своих многочисленных опытов, Фарадей пришел к выводу, что индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также возникает индукционный ток. В данном случае индукция магнитного поля вблизи проводника остается постоянной, а меняется только поток магнитной индукции через площадь контура. Опытным путем было также установлено, что значение индукционного тока совершенно не зависит от изменения потока магнитной индукции, а определяется лишь скоростью его изменения (в опытах Фарадея также доказывается, что отклонение стрелки гальванометра (сила тока) тем больше, чем больше скорость движения магнита, или скорость изменения силы тока, или скорость движения катушек).
Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получения электрического тока с магнитного поля. Этим была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило в дальнейшем толчком для разработки теории электромагнитного поля.