нахождение геометрической суммы (т. н. главного вектора) данной системы сил путем последовательного применения правила параллелограмма сил или построения силового многоугольника. Для сил, приложенных в одной точке, при сложении сил определяется их равнодействующая. или можно так : Сложение сил, -операция определения векторной величины R, равной геометрической сумме векторов, изображающих силы данной системы и называется главным вектором этой системы сил. С. с. производится по правилу сложения векторов, в частности построением многоугольника сил. Механический смысл величины R определяется теоремами статики и динамики. Так, если система сил, действующих на твёрдое тело, имеет равнодействующую, то она равна главному вектору этих сил. При движении любой механической системы её центр масс движется так же, как двигалась бы материальная точка, имеющая массу, равную массе всей системы, и находящаяся под действием силы, равной главному вектору всех действующих на систему внешних сил.
Сумма двух векторов. Дан вектор а и вектор b. Если от произвольной точки А отложить вектор АВ, равный вектору а, затем от точки В отложим вектор ВС, равный вектору b. Полученный вектор АС - это сумма векторов а и b. Это правило сложения векторов называется правилом треугольника. Сумма векторов обозначается вектор а + вектор b. Для любого вектора а справедливо равенство вектор а + нулевой вектор=вектор а. Правило треугольника можно сформулировать и по другому, если А, В, С - произвольные точки, то вектор АВ + вектор ВС = вектор АС. Законы сложения векторов. Правило параллелограмма. Для любых векторов а, b и с справедливы равенства: 1. вектор а + вектор b = вектор b + вектор а (переместительный закон) 2. (вектор а + вектор b)+вектор с = вектор а + (вектор b+ вектор с) (сочетательный закон). Правило параллелограмма: чтобы сложить неколлинеарные векторы а и b, нужно отложить от какой - нибудь точки А вектор АВ=вектору а и вектор AD=вектору b и построить параллелограмм. Тогда вектор АС = вектор а + вектор b. Сумма нескольких векторов. Сложение нескольких векторов производится следующим образом: первый вектор складывается со вторым, затем их сумма складывается с третьим вектором и т. д. Сумма нескольких векторов не зависит от того, в каком порядке они складываются. Правило многоугольника: если А1,А2,...,Аn - произвольные точки плоскости, то вектор А1А2+вектор А2А3+...+векторАn-1An=вектор А1Аn Вычитание векторов. разностью векторов а и b называется такой вектор, сумма которого с вектором b равна вектору а. Таким образом, вектор а - вектор b = вектор а + вектор (-b). Вектор -b - противоположный вектор, вектору b. Противоположные вектора - это вектора, которые имеют равные длины, но противоположно направленные. Обозначается разность: вектор а - вектор b.
или можно так :
Сложение сил, -операция определения векторной величины R, равной геометрической сумме векторов, изображающих силы данной системы и называется главным вектором этой системы сил. С. с. производится по правилу сложения векторов, в частности построением многоугольника сил. Механический смысл величины R определяется теоремами статики и динамики. Так, если система сил, действующих на твёрдое тело, имеет равнодействующую, то она равна главному вектору этих сил. При движении любой механической системы её центр масс движется так же, как двигалась бы материальная точка, имеющая массу, равную массе всей системы, и находящаяся под действием силы, равной главному вектору всех действующих на систему внешних сил.
Дан вектор а и вектор b. Если от произвольной точки А отложить вектор АВ, равный вектору а, затем от точки В отложим вектор ВС, равный вектору b. Полученный вектор АС - это сумма векторов а и b. Это правило сложения векторов называется правилом треугольника.
Сумма векторов обозначается вектор а + вектор b.
Для любого вектора а справедливо равенство вектор а + нулевой вектор=вектор а.
Правило треугольника можно сформулировать и по другому, если А, В, С - произвольные точки, то вектор АВ + вектор ВС = вектор АС.
Законы сложения векторов. Правило параллелограмма.
Для любых векторов а, b и с справедливы равенства:
1. вектор а + вектор b = вектор b + вектор а (переместительный закон)
2. (вектор а + вектор b)+вектор с = вектор а + (вектор b+ вектор с) (сочетательный закон).
Правило параллелограмма: чтобы сложить неколлинеарные векторы а и b, нужно отложить от какой - нибудь точки А вектор АВ=вектору а и вектор AD=вектору b и построить параллелограмм. Тогда вектор АС = вектор а + вектор b.
Сумма нескольких векторов.
Сложение нескольких векторов производится следующим образом: первый вектор складывается со вторым, затем их сумма складывается с третьим вектором и т. д. Сумма нескольких векторов не зависит от того, в каком порядке они складываются.
Правило многоугольника: если А1,А2,...,Аn - произвольные точки плоскости, то вектор А1А2+вектор А2А3+...+векторАn-1An=вектор А1Аn
Вычитание векторов.
разностью векторов а и b называется такой вектор, сумма которого с вектором b равна вектору а. Таким образом, вектор а - вектор b = вектор а + вектор (-b).
Вектор -b - противоположный вектор, вектору b. Противоположные вектора - это вектора, которые имеют равные длины, но противоположно направленные.
Обозначается разность: вектор а - вектор b.