Изначальная потенциальная энергия тела: Eп = m g h = 1 * 10 * 5 = 50 Дж Потенциальная энергия тела: Eк = m V^2 / 2 В процессе падения потенциальная скорость будет переходить в кинетическую, значит в той точке, в которой они равны, каждая составит по половине первоначальной (25 Дж). Благодаря этому мы можем найти скорость в искомой точке: V^2 = 2 Eк / m = 2 * 25 / 1 = 50 V = м/с. Тело находится в свободном падении, значит на него действует ускорение g. Скорость и время падения в этом случае (при отсутствии начальной скорости) связаны взаимоотношением: V = g t Отсюда t = V / g = / 10 c. Зная время равноускоренного движения, можно найти пройденный телом путь: s = g t^2 / 2 = (10 * 50 / 100) / 2 = 2,5 Вычтя этот путь из начальной высоты, получим: 5 - 2,5 = 2,5 м
Си́ла тя́жести — сила, действующая на любое физическое тело вблизи поверхности астрономического объекта (планеты, звезды) и складывающаяся из силы гравитационного притяжения этого объекта и центробежной силы инерции, вызванной его суточным вращением[1][2].
Прочие приложенные к телу силы — такие как силы Кориолиса[3][4][5] при движении тела по поверхности планеты и Архимеда при наличии атмосферы или жидкости — в силу тяжести не включаются.
В большинстве практических случаев анализируется сила тяжести вблизи Земли. Для неё величина центробежной силы составляет доли процента от величины гравитационной и иногда игнорируется.
Сила тяжести
P
→
{\vec P}, действующая на материальную точку массой
m
m, вычисляется по формуле[6]
P
→
=
m
g
→
{\displaystyle {\vec {P}}=m{\vec {g}}},
где
g
→
{\vec g} — ускорение свободного падения[7]. Сила тяжести является консервативной[8]. Она сообщает любому телу, независимо от его массы, ускорение
g
→
{\vec {g}}[6]. Значение
g
g диктуется параметрами (массой
M
M, размерами, скоростью вращения
ω
\omega ) планеты или звезды и координатами на её поверхности.
Если в пределах протяжённого тела поле тяжести приблизительно однородно, то равнодействующая сил тяжести, действующих на элементы этого тела, приложена к центру масс тела[9].
В нерусскоязычной литературе термин «сила тяжести» не вводится — вместо этого говорят о фундаментальном гравитационном взаимодействии, при необходимости делая уточнение о центробежной добавке.
Eп = m g h = 1 * 10 * 5 = 50 Дж
Потенциальная энергия тела:
Eк = m V^2 / 2
В процессе падения потенциальная скорость будет переходить в кинетическую, значит в той точке, в которой они равны, каждая составит по половине первоначальной (25 Дж). Благодаря этому мы можем найти скорость в искомой точке:
V^2 = 2 Eк / m = 2 * 25 / 1 = 50
V = м/с.
Тело находится в свободном падении, значит на него действует ускорение g. Скорость и время падения в этом случае (при отсутствии начальной скорости) связаны взаимоотношением:
V = g t
Отсюда
t = V / g = / 10 c.
Зная время равноускоренного движения, можно найти пройденный телом путь:
s = g t^2 / 2 = (10 * 50 / 100) / 2 = 2,5
Вычтя этот путь из начальной высоты, получим:
5 - 2,5 = 2,5 м
Объяснение:
Си́ла тя́жести — сила, действующая на любое физическое тело вблизи поверхности астрономического объекта (планеты, звезды) и складывающаяся из силы гравитационного притяжения этого объекта и центробежной силы инерции, вызванной его суточным вращением[1][2].
Прочие приложенные к телу силы — такие как силы Кориолиса[3][4][5] при движении тела по поверхности планеты и Архимеда при наличии атмосферы или жидкости — в силу тяжести не включаются.
В большинстве практических случаев анализируется сила тяжести вблизи Земли. Для неё величина центробежной силы составляет доли процента от величины гравитационной и иногда игнорируется.
Сила тяжести
P
→
{\vec P}, действующая на материальную точку массой
m
m, вычисляется по формуле[6]
P
→
=
m
g
→
{\displaystyle {\vec {P}}=m{\vec {g}}},
где
g
→
{\vec g} — ускорение свободного падения[7]. Сила тяжести является консервативной[8]. Она сообщает любому телу, независимо от его массы, ускорение
g
→
{\vec {g}}[6]. Значение
g
g диктуется параметрами (массой
M
M, размерами, скоростью вращения
ω
\omega ) планеты или звезды и координатами на её поверхности.
Если в пределах протяжённого тела поле тяжести приблизительно однородно, то равнодействующая сил тяжести, действующих на элементы этого тела, приложена к центру масс тела[9].
В нерусскоязычной литературе термин «сила тяжести» не вводится — вместо этого говорят о фундаментальном гравитационном взаимодействии, при необходимости делая уточнение о центробежной добавке.