Предположение: Пуля не деформируется. Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть .
По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b:
Земля проявляет вискозность только при достаточной скорости пули, допустим при . Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона:
Пусть . Тогда дифференциальное уравнение имеет вид
Решением является линейная комбинация функций:
То есть Тогда Так как , .
Тогда
Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния. Найдем это расстояние: Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока , то есть
Тогда
Соответственно
При удвоении начальной скорости, конечная координата равна:
Тогда отношение нового пути к старому равно , При, допустим, , это отношение равно .
Пуля не деформируется.
Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть .
По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b:
Земля проявляет вискозность только при достаточной скорости пули, допустим при .
Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона:
Пусть . Тогда дифференциальное уравнение имеет вид
Решением является линейная комбинация функций:
То есть
Тогда
Так как , .
Тогда
Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния.
Найдем это расстояние:
Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока
, то есть
Тогда
Соответственно
При удвоении начальной скорости, конечная координата равна:
Тогда отношение нового пути к старому равно
,
При, допустим, , это отношение равно
.
v-собственная скорость катера u-скорость течения
S=(v+u)t - путь АВ , который проплыл катер по течению
S=ut1-путь АВ, который проплыл плот( движущяя плот скорость - скорость течения)
S=(v-u)t2-обратный путь ВА, который катер проплыл против течения
получаем систему из 3 уравнений:
1)S=(v+u)t 2)S=ut1 3)S=(v-u)t2
приравняем 1 и 2 уравнение, получаем:
(v+u)t=ut1 vt+ut=ut1 vt=ut1-ut vt=u(t1-t) u=vt/(t1-t)
приравняем 2 и 3 уравнение, используя равенство ,получим:
ut1=(v-u)t2
подставим u=vt/(t1-t):
vtt1/(t1-t) = (v- vt/(t1-t))t2
vtt1/(t1-t)=(v(t1-t) - vt )t2/(t1-t) сократим на (t-t1)
vtt1=v(t1-2t)t2 сократим на v
tt1=(t1-2t)t2
t2=tt1/(t1-2t)=1*5/5-2*1=1.7 часа