Термоядерные реакции, ядерные реакции между лёгкими атомными ядрами, протекающие при очень высоких температурах (порядка 107 К и выше) . Высокие температуры, то есть достаточно большие относительные энергии сталкивающихся ядер, необходимы для преодоления электростатического барьера, обусловленного взаимным отталкиванием ядер (как одноимённо заряженных частиц) . Без этого невозможно сближение ядер на расстояние порядка радиуса действия ядерных сил, а следовательно, и "перестройка" ядер, происходящая при Т. р. Поэтому Т. р. в природных условиях протекают лишь в недрах звёзд, а для их осуществления на Земле необходимо сильно разогреть вещество ядерным взрывом, мощным газовым разрядом, гигантским импульсом лазерного излучения или бомбардировкой интенсивным пучком частиц.
f = 6/60 = 0.1 об/с — частота вращения платформы ω = 2πf = 2π*0.1 рад/с — угловая частота вращения её.
Момент инерции однородного диска равен I1 = m1 * R^2 / 2, где R — радиус диска (платформы) По условию задачи, видимо, предполагается, что человек стоит на краю платформы, которая уже вращается с указанной частотой.
Момент инерции человека относительно той же оси равен I2 = m2 * R^2
Суммарный момент импульса системы относительно точки вращения равен L = (I1 + I2)*ω
По условию задачи - человек переходит с края в центр, при этом предполагается, что на систему уже не действуют внешние силы или их момент равен нулю относительно точки / оси вращения, тогда момент импульса сохраняется.
Момент импульса системы после перехода человека в центр равен уравнению L = I1*ω1 (и вклад человека в момент импульса теперь равен 0)
Приравнивая, находим новую частоту вращения платформы с человеком:
m2 = 80кг
n = 6
f = 6/60 = 0.1 об/с — частота вращения платформы
ω = 2πf = 2π*0.1 рад/с — угловая частота вращения её.
Момент инерции однородного диска равен
I1 = m1 * R^2 / 2, где R — радиус диска (платформы)
По условию задачи, видимо, предполагается, что человек стоит на краю платформы, которая уже вращается с указанной частотой.
Момент инерции человека относительно той же оси равен I2 = m2 * R^2
Суммарный момент импульса системы относительно точки вращения равен
L = (I1 + I2)*ω
По условию задачи - человек переходит с края в центр, при этом предполагается, что на систему уже не действуют внешние силы или их момент равен нулю относительно точки / оси вращения, тогда момент импульса сохраняется.
Момент импульса системы после перехода человека в центр равен уравнению L = I1*ω1
(и вклад человека в момент импульса теперь равен 0)
Приравнивая, находим новую частоту вращения платформы с человеком:
ω1 = ω * (I1 + I2) / I1= ω * (m1 / 2 + m2) / (m1 / 2) = ω * (1 + 2*m2/m1)
или ω1 = 2π*0,1 * (1 + 2*80/120) = 2π * 7/30 рад/с
поэтому f1 = ω1/(2π) = 7/30 об/с
или 14 оборотов в минуту