В общем я найду расстояние пройденное 2-й точкой до встречи. Будем считать, что эта точка движется медленнее, т.е. ее период больше. v₁ = 2π*r/T₁ => путь пройденный этой точкой l₁ = v₁*t = 2π*r*t/T₁ Соответственно для точки 2 имеем: v₂ = 2π*r/T₂ и l₂ = 2π*r*t/T₂ Расстояние пройденное точкой 1 больше расстояния пройденного точкой 2 на величину длины окружности т.е. на 2*π*r Имеем l₁ - l₂ = 2π*r*t/T₁ - 2π*r*t/T₂ = 2*π*r t/T₁ - t/T₂ = 1 t*((T₂-T₁)/(T₁*T₂)) = 1 => t = T₁*T₂/(T₂-T₁) l₂ = 2*π*r*T₁*T₂/(T₂*(T₂-T₁)) = 2*π*r*T₁/(T₂-T₁) - путь пройденный 2-й точкой до первой встречи.
Будем считать, что эта точка движется медленнее, т.е. ее период больше.
v₁ = 2π*r/T₁ => путь пройденный этой точкой l₁ = v₁*t = 2π*r*t/T₁
Соответственно для точки 2 имеем: v₂ = 2π*r/T₂ и l₂ = 2π*r*t/T₂
Расстояние пройденное точкой 1 больше расстояния пройденного точкой 2 на величину длины окружности т.е. на 2*π*r
Имеем l₁ - l₂ = 2π*r*t/T₁ - 2π*r*t/T₂ = 2*π*r
t/T₁ - t/T₂ = 1
t*((T₂-T₁)/(T₁*T₂)) = 1 => t = T₁*T₂/(T₂-T₁)
l₂ = 2*π*r*T₁*T₂/(T₂*(T₂-T₁)) = 2*π*r*T₁/(T₂-T₁) - путь пройденный 2-й точкой до первой встречи.
S = 1500 м
V11 = 36 км/ч = 10 м/с
V12 = 27 км/ч = 7,5 м/с
V21 = 7,5 м/с
V22 = 10 м/с
Δt - ?
ПЕРВЫЙ велосипедист:
t1 = S / (2*V11) = 1500 / (2*10) = 75 c
t2 = S / (2*V12) = 1500 / (2*7,5) = 100 c
Общее время
t = t1 + t2 = 75 + 100 = 175 c
ВТОРОЙ велосипедист:
Пусть to - полное время второго велосипедиста
to / 2 - половина времени
Тогда
S1 = V21*to / 2
S2 = V22*to /2
S = S1 + S2 = (V21 + V22)*to / 2
to = 2*S / (V21 + V22) = 2*1500 / (7,5 + 10) = 3000 / 17,5 ≈ 171 c
Второй велосипедист БЫСТРЕЕ на 4 секунды (175 - 171)