Визначте загальний опір ділянки кола та напругу на цій ділянці, якщо R1=3 Ом, R2=6 Ом, R3=3Ом, R4=5 Ом, R5=10 Ом, R6 = 30 Ом. Амперметр показує силу струму 16А
Дано: v_1=9 м/с v_2=v1 / 3 g=10 м/с^2 Найти: h_v2 - ? Решение: 1) Скорость в момент времени t: v=v_0+at (v - скорость, v0 - начальная скорость, a - ускорение св. п., t - время, за которое скорость изменилась с v0 до v). В нашем случае v0=v1=9 м/с, а v=v2=3 м/с. Ускорение возьмем отрицательное, т. к. скорость уменьшается: a= -g = -10 м/с^2. Тогда имеем такое уравнение: 3=9-10t. Из него найдем время: 10t=9-3; 10t=6; t=0.6 (c). Это время, за которое скорость с 9 м/с до 3 м/с, и ОНО ЖЕ время, за которое мяч преодолел искомую высоту h_v2. 2) Преодоленное расстояние при вертикальном движении: S=v0*t+at^2/2 . Здесь S - искомая высота, S=h_v2, v0 - начальная скорость, v0=9 м/с, t - время полета, t=0.6 c, a - ускорение св. падения. Его опять берем отрицательное, потому что скорость уменьшается: a= -g = -10 м/с2. Собственно, h_v2 = 9 * 0.6 - (10 * 0.6^2) / 2 = 3.6 (м).
где υ'₁ - скорость первого шарика после удара; υ'₂ - скорость второго шарика после удара. Это уравнение означает то, что сумма импульсов до столкновения равна сумме импульсов после столкновения. В условии задачи говорится, что после удара шары движутся как единое целое. Такое соударение принято называть абсолютно неупругим столкновением, которое выражается следующим уравнением:
m₁υ₁ + m₂υ₂ = (m₁+ m₂)υ' (1)
где υ' - общая скорость шаров после удара.
Так как шары направляются навстречу друг другу, то в первой части уравнения ставится знак "-":
m₁υ₁ - m₂υ₂ = (m₁+ m₂)υ' (2)
3. Находим общую скорость, применяя уравнение (2) и подставляя значения:
v_1=9 м/с
v_2=v1 / 3
g=10 м/с^2
Найти:
h_v2 - ?
Решение:
1) Скорость в момент времени t: v=v_0+at (v - скорость, v0 - начальная скорость, a - ускорение св. п., t - время, за которое скорость изменилась с v0 до v). В нашем случае v0=v1=9 м/с, а v=v2=3 м/с. Ускорение возьмем отрицательное, т. к. скорость уменьшается: a= -g = -10 м/с^2. Тогда имеем такое уравнение:
3=9-10t.
Из него найдем время: 10t=9-3; 10t=6; t=0.6 (c). Это время, за которое скорость с 9 м/с до 3 м/с, и ОНО ЖЕ время, за которое мяч преодолел искомую высоту h_v2.
2) Преодоленное расстояние при вертикальном движении: S=v0*t+at^2/2 . Здесь S - искомая высота, S=h_v2, v0 - начальная скорость, v0=9 м/с, t - время полета, t=0.6 c, a - ускорение св. падения. Его опять берем отрицательное, потому что скорость уменьшается: a= -g = -10 м/с2. Собственно,
h_v2 = 9 * 0.6 - (10 * 0.6^2) / 2 = 3.6 (м).
ответ: h_v2 = 3.6 м.
Дано:
m₁ = 100 г
m₂ = 200 г
υ₁ = 4 м/с
υ₂ = 3 м/с
Найти: υ' - ?
1. Единицы измерения переводим в систему СИ:
m₁ = 100 г = 0.1 кг
m₂ = 200 г = 0.2 кг
2. Уравнение закона сохранения импульсов:
m₁υ₁ + m₂υ₂ = m₁υ'₁ + m₂υ'₂
где υ'₁ - скорость первого шарика после удара; υ'₂ - скорость второго шарика после удара. Это уравнение означает то, что сумма импульсов до столкновения равна сумме импульсов после столкновения. В условии задачи говорится, что после удара шары движутся как единое целое. Такое соударение принято называть абсолютно неупругим столкновением, которое выражается следующим уравнением:
m₁υ₁ + m₂υ₂ = (m₁+ m₂)υ' (1)
где υ' - общая скорость шаров после удара.
Так как шары направляются навстречу друг другу, то в первой части уравнения ставится знак "-":
m₁υ₁ - m₂υ₂ = (m₁+ m₂)υ' (2)
3. Находим общую скорость, применяя уравнение (2) и подставляя значения:
υ' = (m₁υ₁ - m₂υ₂)/ (m₁+ m₂) = (0.1*4 - 0.2*3)/(0.1+0.2) = - 0.67 м/с
Отрицательный знак общей скорости указывает на то, что шары направляются в ту сторону, куда изначально двигался второй шарик.
ответ: υ' = 0.67 м/с