1. При неравномерном движении скорость тела с течением времени изменяется. Рассмотрим самый простой случай неравномерного движения.
Движение, при котором скорость тела за любые равные промежутки времени изменяется на одно и то же значение, называют равноускоренным.
Например, если за каждые 2 с скорость тела изменялась на 4 м/с, то движение тела является равноускоренным. Модуль скорости при таком движении может как увеличиваться, так и уменьшаться.
2. Пусть в начальный момент времени t0 = 0 скорость тела равна v0. В некоторый момент времени t она стала равной v. Тогда изменение скорости за промежуток времени t – t0 = t равно v– v0, а за единицу времени — . Это отношение называется ускорением. Ускорение характеризует быстроту изменения скорости .
Ускорением тела при равноускоренном движении называют векторную физическую величину, равную отношению изменения скорости тела к промежутку времени, за который это изменение произошло.
a = .
Единица ускорения в СИ — метр на секунду в квадрате (1 ):
[a] = = = 1 .
За единицу ускорения принимают ускорение такого равноускоренного движения, при котором скорость тела за 1 с изменяется на 1 м/с.
3. Поскольку ускорение — величина векторная, необходимо выяснить, как оно направлено.
Пусть автомобиль движется прямолинейно, имея начальную скорость v0 (скорость в момент времени t = 0) и скорость v в некоторый момент времени t. Модуль скорости автомобиля возрастает. например изображены вектор скорости автомобиля. Из определения ускорения, следует, что вектор ускорения направлен в ту же сторону, что и разность векторов v – v0. Следовательно в данном случае направление вектора ускорения совпадает с направлением движения тела (с направлением вектора скорости) .
Пусть теперь модуль скорости автомобиля уменьшается . В этом случае направление вектора ускорения противоположно направлению движения тела (направлению вектора скорости).
Движение, при котором скорость тела за любые равные промежутки времени изменяется на одно и то же значение, называют равноускоренным.
Например, если за каждые 2 с скорость тела изменялась на 4 м/с, то движение тела является равноускоренным. Модуль скорости при таком движении может как увеличиваться, так и уменьшаться.
2. Пусть в начальный момент времени t0 = 0 скорость тела равна v0. В некоторый момент времени t она стала равной v. Тогда изменение скорости за промежуток времени t – t0 = t равно v– v0, а за единицу времени — . Это отношение называется ускорением. Ускорение характеризует быстроту изменения скорости .
Ускорением тела при равноускоренном движении называют векторную физическую величину, равную отношению изменения скорости тела к промежутку времени, за который это изменение произошло.
a = .
Единица ускорения в СИ — метр на секунду в квадрате (1 ):
[a] = = = 1 .
За единицу ускорения принимают ускорение такого равноускоренного движения, при котором скорость тела за 1 с изменяется на 1 м/с.
3. Поскольку ускорение — величина векторная, необходимо выяснить, как оно направлено.
Пусть автомобиль движется прямолинейно, имея начальную скорость v0 (скорость в момент времени t = 0) и скорость v в некоторый момент времени t. Модуль скорости автомобиля возрастает. например изображены вектор скорости автомобиля. Из определения ускорения, следует, что вектор ускорения направлен в ту же сторону, что и разность векторов v – v0. Следовательно в данном случае направление вектора ускорения совпадает с направлением движения тела (с направлением вектора скорости) .
Пусть теперь модуль скорости автомобиля уменьшается . В этом случае направление вектора ускорения противоположно направлению движения тела (направлению вектора скорости).