Внимательно рассмотри рисунок и соответствующую схему. В какой момент стрелка миллиамперметра отклонится от нулевого положения? Выбери из предложенного списка все верные утверждения. 1. при замыкании и размыкании ключа 2. при перемещении ползунка реостата вправо 3. при движении вверх одной катушки относительно другой 4. при вращении одной катушки относительно другой 5. при перемещении ползунка реостата влево
2. физичиская величина, что характеризует електрический ток и чисельна равняется заряду который проходит через перпендикулярный разрез проводника за секунду системы си ампер.
3. Амперметр. Амперметр включают последовательно с батарейкай, в котором надо измерять силу тока.
Колему + надо соединенять с поводов, что идёт от позитивного полюса (источника энергии), клему с знаком - с проводом что идёт от негативного полюса.
4.Напряжение — это давление от источника питания электрической цепи, которое обеспечивает движение заряженных электронов (ток) через проводящий контур, позволяя им выполнять полезную работу (например, обеспечивать свечение лампочки).
В кратком виде: напряжение = давление, оно измеряется в вольтах (В).
5. Вольтметр. Подключается паралельно тела требуещего енергию например лампочки. в остальном как и в Амперметре
Найти потенциал шара радиуса R = 0,1 м, если на расстоянии r=10м от его поверхности потенциал электрического поля
Поле вне шара совпадает с полем точечного заряда, равною заряду q шара и помещенного в его центре. Поэтому потенциал в точке, находящейся на расстоянии R + r от центра шара, jr= kq/(R + r); отсюда q = (R + r)jr/k. Потенциал на поверхности шара
2 N одинаковых шарообразных капелек ртути одноименно заряжены до одного и того же потенциала j. Каков будет потенциал Ф большой капли ртути, получившейся в результате слияния этих капель?
Пусть заряд и радиус каждой капельки ртути равны q и r. Тогда ее потенциал j = kq/r. Заряд большой капли Q = Nq, и если ее радиус равен R, то ее потенциал Ф = kQ/R = kNq/R = Njr/R. Объемы маленькой и большой капель и связаны между собой соотношением V=Nu. Следовательно, и потенциал
3 В центре металлической сферы радиуса R = 1 м, несущей положительный заряд Q=10нКл, находится маленький шарик с положительным или отрицательным зарядом |q| = 20 нКл. Найти потенциал j электрического поля в точке, находящейся на расстоянии r=10R от центра сферы.
В результате электростатической индукции на внешней и внутренней поверхностях сферы появятся равные по модулю, но противоположные по знаку заряды (см. задачу 25 и рис. 332). Вне сферы потенциалы электрических полей, создаваемых этими зарядами, в любой точке равны по модулю и противоположны по знаку. Поэтому потенциал суммарного поля индуцированных зарядов равен нулю. Таким образом, остаются лишь поля, создаваемые вне сферы зарядом BQ на ее поверхности и зарядом шарика q. Потенциал первого поля в точке удаленной от центра сферы на расстояниеr, , а потенциал второго поля в той же точке . Полный потенциал . При q=+20нКлj=27В; при q=-20нКл j=-9В.
4 До какого потенциала можно зарядить находящийся в воздухе (диэлектрическая проницаемость e=1) металлический шар радиуса R = 3 см, если напряженность электрического поля, при которой происходит пробой в воздухе, Е=3 МВ/м?
Наибольшую напряженность электрическое поле имеет у поверхности шара:
Потенциал шара ; отсюда j=ER=90 В.
5 Два одинаково заряженных шарика, расположенных друг от друга на расстоянии r = 25 см, взаимодействуют с силой F=1 мкН. До какого потенциала заряжены шарики, если их диаметры D = 1 см?
Из закона Кулона определяем заряды шариков: . Заряд q, находящийся на шарике радиуса R = D/2, создает на поверхности этого шарика потенциал
В том месте, где находится этот шарик, заряд другого шарика создает потенциал . Таким образом, потенциал каждого шарика
6 В вершинах квадрата расположены точечные заряды (в нКл): q1 = +1, q2=-2, q3= +3, q4=-4 (рис. 71). Найти потенциал и напряженность электрического поля в центре квадрата (в точке А). Диагональ квадрата 2а = 20 см.
Потенциал в центре квадрата равен алгебраической сумме потенциалов, создаваемых всеми зарядами в этой точке:
Напряженность поля в центре квадрата является векторной суммой напряженностей, создаваемых каждым зарядом в этой точке:
Модули этих напряженностей
Удобно сначала сложить попарно векторы, направленные по одной диагонали в противоположные стороны (рис. 339): E1 + E3 и E2 + E4. При данных зарядах сумма E1 + E3 по модулю равна сумме Е2 + Е4. Поэтому результирующая напряженность Е направлена по биссектрисе угла между диагоналями исоставляет с этими диагоналями углы a=45°. Ее модуль E=2545 В/м.
7 Найти потенциалы и напряженности электрического поля в точках а и b, находящихся от точечного заряда q=167нКл на расстояниях rа = 5 см и rb = = 20 см, а также работу электрических сил при перемещении точечного заряда q0 = 1 нКл из точки а в точку b.
1. на фото
2. физичиская величина, что характеризует електрический ток и чисельна равняется заряду который проходит через перпендикулярный разрез проводника за секунду системы си ампер.
3. Амперметр. Амперметр включают последовательно с батарейкай, в котором надо измерять силу тока.
Колему + надо соединенять с поводов, что идёт от позитивного полюса (источника энергии), клему с знаком - с проводом что идёт от негативного полюса.
4.Напряжение — это давление от источника питания электрической цепи, которое обеспечивает движение заряженных электронов (ток) через проводящий контур, позволяя им выполнять полезную работу (например, обеспечивать свечение лампочки).
В кратком виде: напряжение = давление, оно измеряется в вольтах (В).
5. Вольтметр. Подключается паралельно тела требуещего енергию например лампочки. в остальном как и в Амперметре
Объяснение:
поставь коронку и
Объяснение:
Найти потенциал шара радиуса R = 0,1 м, если на расстоянии r=10м от его поверхности потенциал электрического поля
Поле вне шара совпадает с полем точечного заряда, равною заряду q шара и помещенного в его центре. Поэтому потенциал в точке, находящейся на расстоянии R + r от центра шара, jr= kq/(R + r); отсюда q = (R + r)jr/k. Потенциал на поверхности шара
2 N одинаковых шарообразных капелек ртути одноименно заряжены до одного и того же потенциала j. Каков будет потенциал Ф большой капли ртути, получившейся в результате слияния этих капель?
Пусть заряд и радиус каждой капельки ртути равны q и r. Тогда ее потенциал j = kq/r. Заряд большой капли Q = Nq, и если ее радиус равен R, то ее потенциал Ф = kQ/R = kNq/R = Njr/R. Объемы маленькой и большой капель и связаны между собой соотношением V=Nu. Следовательно, и потенциал
3 В центре металлической сферы радиуса R = 1 м, несущей положительный заряд Q=10нКл, находится маленький шарик с положительным или отрицательным зарядом |q| = 20 нКл. Найти потенциал j электрического поля в точке, находящейся на расстоянии r=10R от центра сферы.
В результате электростатической индукции на внешней и внутренней поверхностях сферы появятся равные по модулю, но противоположные по знаку заряды (см. задачу 25 и рис. 332). Вне сферы потенциалы электрических полей, создаваемых этими зарядами, в любой точке равны по модулю и противоположны по знаку. Поэтому потенциал суммарного поля индуцированных зарядов равен нулю. Таким образом, остаются лишь поля, создаваемые вне сферы зарядом BQ на ее поверхности и зарядом шарика q. Потенциал первого поля в точке удаленной от центра сферы на расстояниеr, , а потенциал второго поля в той же точке . Полный потенциал . При q=+20нКлj=27В; при q=-20нКл j=-9В.
4 До какого потенциала можно зарядить находящийся в воздухе (диэлектрическая проницаемость e=1) металлический шар радиуса R = 3 см, если напряженность электрического поля, при которой происходит пробой в воздухе, Е=3 МВ/м?
Наибольшую напряженность электрическое поле имеет у поверхности шара:
Потенциал шара ; отсюда j=ER=90 В.
5 Два одинаково заряженных шарика, расположенных друг от друга на расстоянии r = 25 см, взаимодействуют с силой F=1 мкН. До какого потенциала заряжены шарики, если их диаметры D = 1 см?
Из закона Кулона определяем заряды шариков: . Заряд q, находящийся на шарике радиуса R = D/2, создает на поверхности этого шарика потенциал
В том месте, где находится этот шарик, заряд другого шарика создает потенциал . Таким образом, потенциал каждого шарика
6 В вершинах квадрата расположены точечные заряды (в нКл): q1 = +1, q2=-2, q3= +3, q4=-4 (рис. 71). Найти потенциал и напряженность электрического поля в центре квадрата (в точке А). Диагональ квадрата 2а = 20 см.
Потенциал в центре квадрата равен алгебраической сумме потенциалов, создаваемых всеми зарядами в этой точке:
Напряженность поля в центре квадрата является векторной суммой напряженностей, создаваемых каждым зарядом в этой точке:
Модули этих напряженностей
Удобно сначала сложить попарно векторы, направленные по одной диагонали в противоположные стороны (рис. 339): E1 + E3 и E2 + E4. При данных зарядах сумма E1 + E3 по модулю равна сумме Е2 + Е4. Поэтому результирующая напряженность Е направлена по биссектрисе угла между диагоналями исоставляет с этими диагоналями углы a=45°. Ее модуль E=2545 В/м.
7 Найти потенциалы и напряженности электрического поля в точках а и b, находящихся от точечного заряда q=167нКл на расстояниях rа = 5 см и rb = = 20 см, а также работу электрических сил при перемещении точечного заряда q0 = 1 нКл из точки а в точку b.