В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
nariksalimov
nariksalimov
31.01.2021 00:23 •  Физика

Вода объемом 0,5 л налита в сосуд и имеет температуру 30 °С. а) Определите массу воды. (ρ = 1000 кг/м3) [2]

b) Определите, какое количество теплоты необходимо, чтобы нагреть воду до температуры кипения. (с= 4200 Дж/(кг ∙°С)). [2]

с) Вычислите, какое количество теплоты необходимо, чтобы воду превратить в пар (r = 2,3·106 Дж/кг).
[2]

d) Вычислите общее количество теплоты, которое было затрачено. [1]

Показать ответ
Ответ:
FlafeRCat
FlafeRCat
14.09.2020 14:07

Неравномерным называется движение, при котором тело за равные промежутки времени проходит неравные пути.

Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение

Vср. = Sполн

tполн

Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера: спидометр автомобиля показывает мгновенную скорость).

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории.

0,0(0 оценок)
Ответ:
flagmarta
flagmarta
12.04.2020 11:15

L_{1} =\frac{ H \sin2\alpha\cos\beta\sin(\alpha + \beta)}{\sin(\alpha - \beta) \sin(\alpha + \beta)}}\\L_{2} =\frac{ H\sin(2\alpha) \cos\beta(\cos\alpha -\cos\beta+2\cos\beta) }{\sin(\alpha - \beta) \sin(\alpha + \beta) ) }}

Объяснение (вычисления кропотливые, обязательно проверяйте):

У задачи два варианта решения:

1) угол броска направлен ниже линии горизонта

2) угол броска направлен выше линии горизонта

Вариант 1)

Разложим проекции скорости вначале V0 и вконце V1 полёта на оси.

V_{0x} = V_{0} \cos\alpha \\V_{0y} = V_{0} \sin\alpha \\V_{1x} = V_{1} \cos\beta \\V_{1y} = V_{1} \sin\beta

При этом

V_{0x} =V_{1x} \\V_{0}\cos\alpha =V_{1}\cos\beta \\V_{1}=\frac{V_{0}\cos\alpha}{\cos\beta}

Из закона сохранения энергии имеем

\frac{mV_{0y}^{2} }{2} = \frac{mV_{1y}^{2} }{2} + mgH\\\frac{V_{0y}^{2} }{2} = \frac{V_{1y}^{2} }{2} + gH\\\frac{(V_{0} \sin\alpha)^{2} }{2} = \frac{(V_{1} \sin\beta )^{2 } }{2} + gH\\\frac{(V_{0} \sin\alpha)^{2} }{2} = \frac{(\frac{V_{0}\cos\alpha }{\cos\beta } \sin\beta )^{2 } }{2} + gH\\(V_{0} \sin\alpha)^{2} = (\frac{V_{0}\cos\alpha }{\cos\beta } \sin\beta )^{2 } + 2gH\\V_{0}^{2} (\sin\alpha)^{2} - V_{0}^{2}(\frac{\cos\alpha \sin\beta }{\cos\beta } )^{2 } = 2gH\\

V_{0}^{2}( (\sin\alpha)^{2} - (\frac{\cos\alpha \sin\beta }{\cos\beta } )^{2 }) = 2gH\\\\V_{0}^{2}( (\sin\alpha - \frac{\cos\alpha \sin\beta }{\cos\beta } )*(\sin\alpha + \frac{\cos\alpha \sin\beta }{\cos\beta } )}) = 2gH\\\\V_{0}^{2}( (\frac{\sin\alpha \cos\beta - \cos\alpha \sin\beta }{\cos\beta } )*( \frac{\sin\alpha \cos\beta +\cos\alpha \sin\beta }{\cos\beta } )}) = 2gH\\\\

V_{0}^{2}( (\frac{\sin\alpha \cos\beta - \cos\alpha \sin\beta }{\cos\beta } )*( \frac{\sin\alpha \cos\beta +\cos\alpha \sin\beta }{\cos\beta } )}) = 2gH\\V_{0}^{2}( (\frac{\sin(\alpha - \beta) }{\cos\beta } )*( \frac{\sin(\alpha +\beta) }{\cos\beta } )}) = 2gH\\\\V_{0}^{2} =( (\frac{\sin(\alpha - \beta) }{\cos\beta } )*( \frac{\sin(\alpha +\beta) }{\cos\beta } )}) =\frac{ 2gH \cos^{2}\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}

V_{0} =\sqrt{\frac{ 2gH \cos^{2}\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}}

Теперь можно найти время полёта

V_{1y} =V_{0y}+gt\\t=\frac{V_{1y} -V_{0y}}{g} =\frac{\frac{V_{0y}\cos\alpha }{\cos\beta } -V_{0y}}{g}=V_{0y}\frac{\cos\alpha -\cos\beta} {g\cos\beta}=V_{0}\frac{\sin\alpha (\cos\alpha -\cos\beta)} {g\cos\beta}

Пройденный путь будет равен

L=V_{0x} t=V_{0} t \cos\alpha =V_{0}^{2} \frac{\sin\alpha (\cos\alpha -\cos\beta)} {g\cos\beta}\cos\alpha=\frac{ 2gH \cos^{2}\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}*\frac{\sin\alpha (\cos\alpha -\cos\beta)} {g\cos\beta}\cos\alpha\\L=\frac{ 2H \sin\alpha\cos\alpha \cos\beta\sin(\alpha + \beta)}{\sin(\alpha - \beta) \sin(\alpha + \beta)}}\\L=\frac{ H \sin2\alpha\cos\beta\sin(\alpha + \beta)}{\sin(\alpha - \beta) \sin(\alpha + \beta)}}

2) Во втором случае добавится время, которое тело пролетит выше уровня H

Время до середины этого участка траектории будет

V_{0y} -gt_{\frac{1}{2} } =0\\t_{\frac{1}{2}}=\frac{V_{0y}}{g} =\frac{V_{0}\sin\alpha }{g}

Всё время этой части траектории будет

t =\frac{2V_{0}\sin\alpha }{g}

Это время добавляем к времени, полученном в первой части

T = V_{0}\frac{\sin\alpha (\cos\alpha -\cos\beta)} {g\cos\beta}+\frac{2V_{0}\sin\alpha }{g}=V_{0}\frac{\sin\alpha (\cos\alpha -\cos\beta)+2\sin\alpha\cos\beta} {g\cos\beta}

Аналогично вычисляем путь

L=V_{0x} T=V_{0} T \cos\alpha =V_{0}^{2} \frac{\sin\alpha (\cos\alpha -\cos\beta)+2\sin\alpha\cos\beta} {g\cos\beta} \cos\alpha=\\\\\frac{ 2gH \cos^{2}\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}*\frac{\sin\alpha (\cos\alpha -\cos\beta)+2\sin\alpha\cos\beta} {g\cos\beta} \cos\alpha=

\frac{ 2gH \cos\beta }{\sin(\alpha - \beta) \sin(\alpha + \beta) }}*\frac{\sin\alpha\cos\alpha (\cos\alpha -\cos\beta+2\cos\beta)} {g} \\L=\frac{ H\sin(2\alpha) \cos\beta(\cos\alpha -\cos\beta+2\cos\beta) }{\sin(\alpha - \beta) \sin(\alpha + \beta) ) }}


Тело брошено с высоты H под углом α к горизонтальной плоскости. К поверхности земли оно подлетает по
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота