Воднородном магнитном поле в плоскости, перпендикулярной его линиям, расположен прямолинейный проводник с током. проводник сгибают посередине до угла в 60° в плоскости, перпендикулярной линиям индукции. найдите отношение /, где - модуль силы ампера, действующей на прямой проводник, - то же на согнутый проводник.
В-1. а) Камень движется по параболической орбите ( поднимается из начальной точки, достигает наивысшей точки и идет на снижение засчет силы тяжести и гравитации)
б) По круговой орбите (формально - эллиптической, но эксцентриситет земной орбиты очень мал, посему принято считать за круговой)
27 км/ч переводим в систему СИ: 27000 м/3600 с или 7.5 м/с. 15 м/с>7.5 м/с => 15 м/с>27 км/ч (что и требовалось доказать)
Первый автомобиль проделал путь= 12 м/с*10 с=120 м. Чтобы определить скорость второго авто делим пройденный путь на время: 120 м/15 с=8 м/с
Оба тела движутся прямолинейно равномерно, в положительном направлении оси абсцисс. Чтобы решить графически - строй координатную плоскость и графики для каждого тела (зависимость координаты от времени). 1) Чтобы найти время встречи, приравниваем уравнения. 3+2t=6+t<=>t=6-3<=>t=3 (c) - время встречи.
2) Чтобы найти место встречи - подставь время встречи в одно из уравнений движения: 6+3=9(м) - место встречи.
Vx=V0x+axt. ⇒ ax=(Vx-Vox)/t. В данном случае начальная скорость - 2 м/с.⇒ ax=(5 м/с-2 м/с)/5 с = 0,6 м/с².
Дальше предлагаю решать по аналогии. Формулы приложу ниже:
Vx=V0x+axt (1) - формула определения скорости при равнопеременном движении.
Sx=V0xt+(axt²)/2 - пройденный путь при равнопеременном движении. С их можно решить любую задачу по кинематике пр прямолинейном движении. Учи физику - интереснейший предмет!
при вытвскивании кубика F1+Fa=Fт
Fт=mg=p2V1g - сила тяжести куба Fa=gp1(V1+V) - действующая на него сила архимеда, где V - это обьем полости
F1+gp1(V1+V) = p2V1g
F2+F=Fa
F2+p2V1g = gp1(V1+V)
система уравнений:
1)F1+gp1(V1+V) = p2V1g
2)F2+p2V1g = gp1(V1+V)
из первого выразим V1:
F1+gp1V1+gp1V=p2V1g
F1+gp1V=V1g( p2-p1)
V1=(F1+gp1V)/g(p2-p1)
подставим во второе:
F2+p2(F1+gp1V)g/g(p2-p1)=gp1(F1+gp1V)/g(p2-p1) +gp1V
F2+p2(F1+gp1V)/(p2-p1)=p1(F1+gp1V)/(p2-p1) +gp1V |*(p2-p1)
F2(p2-p1) + p2(F1+gp1V)=p1(F1+gp1V)+ gp1V(p2-p1)
F2(p2-p1) + p2F1+gp1p2V=p1F1+gp1p2V+gp1V(p2-p1)
F2(p2-p1)+p2F1-p1F1= gp1p2V+gp1V(p2-p1)-gp1p2V
F2(p2-p1)+F1(p2-p1)=gp1V(p2-p1) | :(p2-p1)
F2+F1=gp1V
V=(F1+F2)/gp1=(50+26)/10*1000=0.0076 cм3
В-1. а) Камень движется по параболической орбите ( поднимается из начальной точки, достигает наивысшей точки и идет на снижение засчет силы тяжести и гравитации)
б) По круговой орбите (формально - эллиптической, но эксцентриситет земной орбиты очень мал, посему принято считать за круговой)
г) Параболическая орбита, траектория - кривая линия.
27 км/ч переводим в систему СИ: 27000 м/3600 с или 7.5 м/с. 15 м/с>7.5 м/с => 15 м/с>27 км/ч (что и требовалось доказать)
Первый автомобиль проделал путь= 12 м/с*10 с=120 м. Чтобы определить скорость второго авто делим пройденный путь на время: 120 м/15 с=8 м/с
Оба тела движутся прямолинейно равномерно, в положительном направлении оси абсцисс. Чтобы решить графически - строй координатную плоскость и графики для каждого тела (зависимость координаты от времени). 1) Чтобы найти время встречи, приравниваем уравнения. 3+2t=6+t<=>t=6-3<=>t=3 (c) - время встречи.
2) Чтобы найти место встречи - подставь время встречи в одно из уравнений движения: 6+3=9(м) - место встречи.
Vx=V0x+axt. ⇒ ax=(Vx-Vox)/t. В данном случае начальная скорость - 2 м/с.⇒ ax=(5 м/с-2 м/с)/5 с = 0,6 м/с².
Дальше предлагаю решать по аналогии. Формулы приложу ниже:
Vx=V0x+axt (1) - формула определения скорости при равнопеременном движении.
Sx=V0xt+(axt²)/2 - пройденный путь при равнопеременном движении. С их можно решить любую задачу по кинематике пр прямолинейном движении. Учи физику - интереснейший предмет!