Впериоде с увеличением порядкового номера снижаются(-ется): а) число аллотропных модификаций б) число валентных электронов в) основные свойства высших оксидов
Период T=2*pi*sqrt(L*C) В таком контуре энергия на катушке равна энергии на конденсаторе. Wс=Wl (C*U^2)/2 = (L*I^2)/2 Но этот контур не подключен к источнику питания, значит нажно использовать формулу для энергии конденсатора q^2/(2*C) после преобразований получаем, что L=q^2 (max) / ( i^2 (max)*C) Теперь подставим в формулу периода, где сократится емкость конденсатора. T=2*pi*sqrt(q^2 / i^2) Мы просто выразили индуктивность и подставили в формулу периода. Поскольку контур сам по себе, без источника, то значения тока и заряда будут максимальными.
Период T=2*pi*sqrt(L*C) В таком контуре энергия на катушке равна энергии на конденсаторе. Wс=Wl (C*U^2)/2 = (L*I^2)/2 Но этот контур не подключен к источнику питания, значит нажно использовать формулу для энергии конденсатора q^2/(2*C) после преобразований получаем, что L=q^2 (max) / ( i^2 (max)*C) Теперь подставим в формулу периода, где сократится емкость конденсатора. T=2*pi*sqrt(q^2 / i^2) Мы просто выразили индуктивность и подставили в формулу периода. Поскольку контур сам по себе, без источника, то значения тока и заряда будут максимальными.
В таком контуре энергия на катушке равна энергии на конденсаторе.
Wс=Wl
(C*U^2)/2 = (L*I^2)/2
Но этот контур не подключен к источнику питания, значит нажно использовать формулу для энергии конденсатора q^2/(2*C)
после преобразований получаем, что L=q^2 (max) / ( i^2 (max)*C)
Теперь подставим в формулу периода, где сократится емкость конденсатора. T=2*pi*sqrt(q^2 / i^2)
Мы просто выразили индуктивность и подставили в формулу периода.
Поскольку контур сам по себе, без источника, то значения тока и заряда будут максимальными.
В таком контуре энергия на катушке равна энергии на конденсаторе.
Wс=Wl
(C*U^2)/2 = (L*I^2)/2
Но этот контур не подключен к источнику питания, значит нажно использовать формулу для энергии конденсатора q^2/(2*C)
после преобразований получаем, что L=q^2 (max) / ( i^2 (max)*C)
Теперь подставим в формулу периода, где сократится емкость конденсатора. T=2*pi*sqrt(q^2 / i^2)
Мы просто выразили индуктивность и подставили в формулу периода.
Поскольку контур сам по себе, без источника, то значения тока и заряда будут максимальными.