Сторону равностороннего треугольника можно вычислить по формуле -
a=\frac{2h}{\sqrt{3} }a=
3
2h
Где а - длина стороны равностороннего треугольника, h - длина высоты равностороннего треугольника.
Подставим в формулу известные нам значения -
\begin{lgathered}a=\frac{2*6\sqrt{3} }{\sqrt{3} }a=12\end{lgathered}
a=
2∗6
a=12
a = 12 см.
Площадь равностороннего треугольника можно вычислить по формуле -
S =\frac{a^{2} \sqrt{3} }{4}S=
4
a
2
Где S - площадь равностороннего треугольника.
\begin{lgathered}S =\frac{12^{2} \sqrt{3} }{4}S =\frac{144\sqrt{3} }{4}S = 36\sqrt{3}\end{lgathered}
S=
12
144
S=36
ответ: 36√3 см².
ответ: -_-
Объяснение:
Силы инерции неотличимы от сил гравитации (принцип эквивалентности).
Во вращающейся системе отсчета центробежное ускорение складывается с ускорением свободного падения.
Жидкость и погруженное в нее тело будут вести себя так, как если бы они находились в поле гравитации
с ускорением свободного падения
a = ω2*r + g.
Пробка находится в равновесии, если проекция a на ось, направленную параллельно пробирке, равна нулю. То есть, когда
g/ω2*r = tg(α).
Середине пробирки соответствует r = L*sin(α)/2. Значит, пробка будет находиться в середине пробирки, если
ω = √(g/r*tg(α)) = √(2g*cos(α)/L)/sin(α).
Сторону равностороннего треугольника можно вычислить по формуле -
a=\frac{2h}{\sqrt{3} }a=
3
2h
Где а - длина стороны равностороннего треугольника, h - длина высоты равностороннего треугольника.
Подставим в формулу известные нам значения -
\begin{lgathered}a=\frac{2*6\sqrt{3} }{\sqrt{3} }a=12\end{lgathered}
a=
3
2∗6
3
a=12
a = 12 см.
Площадь равностороннего треугольника можно вычислить по формуле -
S =\frac{a^{2} \sqrt{3} }{4}S=
4
a
2
3
Где S - площадь равностороннего треугольника.
Подставим в формулу известные нам значения -
\begin{lgathered}S =\frac{12^{2} \sqrt{3} }{4}S =\frac{144\sqrt{3} }{4}S = 36\sqrt{3}\end{lgathered}
S=
4
12
2
3
S=
4
144
3
S=36
3
ответ: 36√3 см².
ответ: -_-
Объяснение:
Силы инерции неотличимы от сил гравитации (принцип эквивалентности).
Во вращающейся системе отсчета центробежное ускорение складывается с ускорением свободного падения.
Жидкость и погруженное в нее тело будут вести себя так, как если бы они находились в поле гравитации
с ускорением свободного падения
a = ω2*r + g.
Пробка находится в равновесии, если проекция a на ось, направленную параллельно пробирке, равна нулю. То есть, когда
g/ω2*r = tg(α).
Середине пробирки соответствует r = L*sin(α)/2. Значит, пробка будет находиться в середине пробирки, если
ω = √(g/r*tg(α)) = √(2g*cos(α)/L)/sin(α).