Под действием электрического поля заряда гильзы в руке происходит разделение зарядов. А точнее на ближнем к гильзе крае руки скапливается противоположный (по отношению к заряду гильзы) по знаку заряд, а на дальнем крае руки соответственно совпадающий по знаку с зарядом гильзы заряд. Силы притяжения и отталкивания, обусловленные взаимодействием заряда гильзы с наведенными зарядами в руке, не равны по модулю, так как расстояния от них до гильзы различные, поэтому суммарная сила, действующая на заряд гильзы, не равна нулю.
Сравнивая уравнение состояния идеального газа и основное уравнение кинетической теории газов, записанные для одного моля (для этого число молекул N возьмём равным числу Авогадро NА), найдём среднюю кинетическую энергию одной молекулы:
и .
Откуда
. (31)
Средняя кинетическая энергия поступательного движения молекулы не зависит от её природы и пропорциональна абсолютной температуре газа T. Отсюда следует, что абсолютная температура является мерой средней кинетической энергии молекул.
Величина R/NА = k в уравнении (31) получила название постоянной Больцмана и представляет собой газовую постоянную, отнесенную к одной молекуле: k = 1,38·10-23 Дж/К-23.
Так как =kТ, то средняя квадратичная скорость равна
. (32)
Подставляя значение средней кинетической энергии поступательного движения молекул (31) в основное уравнение молекулярно–кинетической теории газов, получим другую форму уравнения состояния идеального газа:
Сравнивая уравнение состояния идеального газа и основное уравнение кинетической теории газов, записанные для одного моля (для этого число молекул N возьмём равным числу Авогадро NА), найдём среднюю кинетическую энергию одной молекулы:
и .
Откуда
. (31)
Средняя кинетическая энергия поступательного движения молекулы не зависит от её природы и пропорциональна абсолютной температуре газа T. Отсюда следует, что абсолютная температура является мерой средней кинетической энергии молекул.
Величина R/NА = k в уравнении (31) получила название постоянной Больцмана и представляет собой газовую постоянную, отнесенную к одной молекуле:
k = 1,38·10-23 Дж/К-23.
Так как =kТ, то средняя квадратичная скорость равна
. (32)
Подставляя значение средней кинетической энергии поступательного движения молекул (31) в основное уравнение молекулярно–кинетической теории газов, получим другую форму уравнения состояния идеального газа:
P = n0kT. (33)