Вычисли время, за которое свет пройдёт по световоду длиной L=88 км, если предельный угол отражения вещества, из которого выполнена сердцевина световода, αпр =45° (показатель преломления оболочки световода равен 1).
Есть такой закон Архимеда для жидкостей. Средняя плотность железного гвоздя больше плотности воды. Следовательно, гвоздь имеет массу больше, чем равное с ним по объему количество воды. Это значит, что выталкивающая сила, действующая на гвоздь меньше, чем сила тяжести, действующая на него же. Вывод - равнодействующая сил направлена вниз, гвоздь тонет.
С кораблем - все наоборот. Он внутри полый, и сделано это специально, в первую очередь для того, чтобы его средняя плотность (по всему объему) была меньше, чем плотность воды. Следовательно, корабль имеет массу меньше, чем равное с ним по объему количество воды. Корабль погружается до тех пор, пока сила тяжести, действующая на него не уравновесится выталкивающей силой. Вывод - равнодействующая сил равна нулю, корабль плывет.
Кстати, если понизить среднюю плотность воды (например, наполнив ее пузырьками воздуха) , то прекрасно плававший до тех пор корабль может "потерять плавучесть" и затонуть.
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
Средняя плотность железного гвоздя больше плотности воды. Следовательно, гвоздь имеет массу больше, чем равное с ним по объему количество воды. Это значит, что выталкивающая сила, действующая на гвоздь меньше, чем сила тяжести, действующая на него же. Вывод - равнодействующая сил направлена вниз, гвоздь тонет.
С кораблем - все наоборот. Он внутри полый, и сделано это специально, в первую очередь для того, чтобы его средняя плотность (по всему объему) была меньше, чем плотность воды. Следовательно, корабль имеет массу меньше, чем равное с ним по объему количество воды. Корабль погружается до тех пор, пока сила тяжести, действующая на него не уравновесится выталкивающей силой. Вывод - равнодействующая сил равна нулю, корабль плывет.
Кстати, если понизить среднюю плотность воды (например, наполнив ее пузырьками воздуха) , то прекрасно плававший до тех пор корабль может "потерять плавучесть" и затонуть.
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.