из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. сила, которая действует на электрический заряд q, движущийся в магнитном поле со скоростью v, называется силой лоренца и задается выражением
(1)
где в — индукция магнитного поля, в котором заряд движется.
чтобы определить направление силы лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор в, а четыре вытянутых пальца направить вдоль вектора v (для q> 0 направления i и v , для q< 0 — противоположны), то отогнутый большой палец покажет направление силы, которая действует на положительный заряд. на рис. 1 продемонстрирована взаимная ориентация векторов v, в (поле имеет направление на нас, на рисунке показано точками) и f для положительного заряда. если заряд отрицательный, то сила действует в противоположном направлении. модуль силы лоренца, как уже известно, равен
где α — угол между v и в.
подчеркнем еще раз, что магнитное поле не оказывает действия на покоящийся электрический заряд. этим магнитное поле существенно отличается от электрического. магнитное поле действует только на движущиеся в нем заряды.
зная действие силы лоренца на заряд можно найти модуль и направление вектора в, и формула для силы лоренца может быть применена для нахождения вектора магнитной индукции в.
поскольку сила лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. значит, сила лоренца работы не совершает. другими словами, постоянное магнитное поле не совершает работы над движущейся в этом поле заряженной частицей и, следовательно, кинетическая энергия этой частицы при движении в магнитном поле не изменяется.
в случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией в действует еще и электрическое поле с напряженностью е, то суммарная результирующая сила f, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы лоренца:
это выражение носит название формулы лоренца. скорость v в этой формуле есть скорость заряда относительно магнитного поля.
сила лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамикедействует на точечную заряженную частицу. иногда силой лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. в международной системе единиц (си)выражается как: f=q(e+(v умножыть в))
названа в честь голландского хендрика лоренца, который вывел выражение для этой силы в 1892 году. за три года до лоренца правильное выражение было найдено о. хевисайдом.
макроскопическим проявлением силы лоренца является сила ампера.
для силы лоренца, так же как и для сил инерции, третий закон ньютона не выполняется. лишь переформулировав этот закон ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил лоренца
Дано: q₂=-112нКл=-112·10⁻⁹Кл q=-46нКл=-46·10⁻⁹Кл A=44° r=44.9см=44.9·10⁻²м Найти: q₁, N₂, L, m - ? Решение: Заряд равен произведению заряда одного электрона на их количество:
Выражаем и находим число электронов:
После соприкосновения аров их заряд стал одинаковым и равным среднему арифметическому исходных зарядов:
Величина первого заряда:
После расхождения нити образуют равнобедренный треугольник (на картинке), проведя биссектрису в котором можно записать выражение для синуса:
Тогда, длина нити:
Также, на каждый из двух шариков будут действовать силы: тяжести, Кулона и натяжения нити (на картинке). Так как шарики находятся в покое, то их векторная сумма равна нулю:
Проецируя выражение на пару осей, получим:
Разделим почленно первое равенство на второе и выразим m:
Угол , так как в сумме пара углов при основании составляет Определяем силу Кулона:
из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. сила, которая действует на электрический заряд q, движущийся в магнитном поле со скоростью v, называется силой лоренца и задается выражением
(1)
где в — индукция магнитного поля, в котором заряд движется.
чтобы определить направление силы лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор в, а четыре вытянутых пальца направить вдоль вектора v (для q> 0 направления i и v , для q< 0 — противоположны), то отогнутый большой палец покажет направление силы, которая действует на положительный заряд. на рис. 1 продемонстрирована взаимная ориентация векторов v, в (поле имеет направление на нас, на рисунке показано точками) и f для положительного заряда. если заряд отрицательный, то сила действует в противоположном направлении. модуль силы лоренца, как уже известно, равен
где α — угол между v и в.
подчеркнем еще раз, что магнитное поле не оказывает действия на покоящийся электрический заряд. этим магнитное поле существенно отличается от электрического. магнитное поле действует только на движущиеся в нем заряды.
зная действие силы лоренца на заряд можно найти модуль и направление вектора в, и формула для силы лоренца может быть применена для нахождения вектора магнитной индукции в.
поскольку сила лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. значит, сила лоренца работы не совершает. другими словами, постоянное магнитное поле не совершает работы над движущейся в этом поле заряженной частицей и, следовательно, кинетическая энергия этой частицы при движении в магнитном поле не изменяется.
в случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией в действует еще и электрическое поле с напряженностью е, то суммарная результирующая сила f, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы лоренца:
это выражение носит название формулы лоренца. скорость v в этой формуле есть скорость заряда относительно магнитного поля.
сила лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамикедействует на точечную заряженную частицу. иногда силой лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. в международной системе единиц (си)выражается как: f=q(e+(v умножыть в))
названа в честь голландского хендрика лоренца, который вывел выражение для этой силы в 1892 году. за три года до лоренца правильное выражение было найдено о. хевисайдом.
макроскопическим проявлением силы лоренца является сила ампера.
для силы лоренца, так же как и для сил инерции, третий закон ньютона не выполняется. лишь переформулировав этот закон ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил лоренца
q₂=-112нКл=-112·10⁻⁹Кл
q=-46нКл=-46·10⁻⁹Кл
A=44°
r=44.9см=44.9·10⁻²м
Найти:
q₁, N₂, L, m - ?
Решение:
Заряд равен произведению заряда одного электрона на их количество:
Выражаем и находим число электронов:
После соприкосновения аров их заряд стал одинаковым и равным среднему арифметическому исходных зарядов:
Величина первого заряда:
После расхождения нити образуют равнобедренный треугольник (на картинке), проведя биссектрису в котором можно записать выражение для синуса:
Тогда, длина нити:
Также, на каждый из двух шариков будут действовать силы: тяжести, Кулона и натяжения нити (на картинке). Так как шарики находятся в покое, то их векторная сумма равна нулю:
Проецируя выражение на пару осей, получим:
Разделим почленно первое равенство на второе и выразим m:
Угол , так как в сумме пара углов при основании составляет
Определяем силу Кулона:
Определяем m:
ответ: q₁=20нКл, N₂=7·10¹¹, L=0.6м, m=23.87мг