Объяснение:Из основного уравнения гидростатики следует, что давление в любой точке жидкости равно суммарному давлению, состоящему из давления, приложенного к свободной поверхности жидкости и веса жидкости.
Следовательно, давление, действующее на свободную поверхность, передается во все точки жидкости без изменения.
Паскаль установил, что жидкость (или газы) передают производимое на них давление во все стороны одинаково.
Различают следующие виды давлений:
– атмосферное (барометрическое)
– абсолютное
– избыточное (манометрическое)
Принцип работы гидравлического пресса основан на законе Паскаля. Давление производимое на жидкость:
P=F1/S2
тогда по закону Паскаля
P=F2/S2
из соотношения F2/F1=S2/S1 определяются искомые величины.
Ну что, Татьяна, давай рассуждать логически. Ща сам тоже буду думать, пока пишу. По ходу скорость платформ из 9 км/ч переведём в 2,5 м/с.
Давай предположим, что сначала платформа двигалась вправо (в направлении на "+"), и если верно понимаю условие, выстрел был сделан в эту же сторону, то есть вправо, так?
Сначала посчитаем начальный импульс платформы со снарядом. Это будет p0 = (М+м)*v1. После того, как выстрел сделан, масса платформы стала без снаряда, то есть просто М; а снаряд унёс с неё импульс m*v2.
По закону сохранения импульса, новый импульс платформы станет p2 = p0 - m*v2. Соберём в кучку, будет p2 = (M+m)*v1 - m*v2. Расшифруем, будет p2 = M*v1 + m*v1 - m*v2. Подставим соотношение М/м = 200, и получим p2 = М*v1 + M/200*v1 - M/200*v2 = M * ( v1 + 1/200*v1 - 1/200*v2) = M * ( 2,5 + 1/200*2,5 - 1/200*800). У меня получилось M * (-1,4875). Внезапно знак стал минус, это означает, что платформа после выстрела поехала в обратную сторону. А её скорость равна как раз найденный импульс, делить на массу, то есть именно v = -1,4875 м/с.
Есть ответ на первый вопрос. Перейдём ко второму. Тут надо найти силу трения, а она равна весу платформы, умножить на коэфф.трения. Fтр = М * g * мю.
Итак, платформа поехала влево с начальной скоростью v, и на неё действует постоянная сила Fтр, значит движение имеет постоянное отрицательное ускорение а = Fтр / М = (М * g * мю ) / М = g * мю.
Остался последний шаг - подставляем в формулу "без времени" s = v^2 / (2 * a ) = (1,4875)^2 / (2 * g * мю ) = 1,4875^2 / (2*9,81*0,07) = 1,611 м. Точнее, если с учётом знака (платформа-то едет влево), то расстояние s = -1,611 м.
Ну, у меня так получилось. Проверь. Может где ошибся.
Объяснение:Из основного уравнения гидростатики следует, что давление в любой точке жидкости равно суммарному давлению, состоящему из давления, приложенного к свободной поверхности жидкости и веса жидкости.
Следовательно, давление, действующее на свободную поверхность, передается во все точки жидкости без изменения.
Паскаль установил, что жидкость (или газы) передают производимое на них давление во все стороны одинаково.
Различают следующие виды давлений:
– атмосферное (барометрическое)
– абсолютное
– избыточное (манометрическое)
Принцип работы гидравлического пресса основан на законе Паскаля. Давление производимое на жидкость:
P=F1/S2
тогда по закону Паскаля
P=F2/S2
из соотношения F2/F1=S2/S1 определяются искомые величины.
Давай предположим, что сначала платформа двигалась вправо (в направлении на "+"), и если верно понимаю условие, выстрел был сделан в эту же сторону, то есть вправо, так?
Сначала посчитаем начальный импульс платформы со снарядом. Это будет p0 = (М+м)*v1. После того, как выстрел сделан, масса платформы стала без снаряда, то есть просто М; а снаряд унёс с неё импульс m*v2.
По закону сохранения импульса, новый импульс платформы станет p2 = p0 - m*v2. Соберём в кучку, будет p2 = (M+m)*v1 - m*v2. Расшифруем, будет p2 = M*v1 + m*v1 - m*v2. Подставим соотношение М/м = 200, и получим p2 = М*v1 + M/200*v1 - M/200*v2 = M * ( v1 + 1/200*v1 - 1/200*v2) = M * ( 2,5 + 1/200*2,5 - 1/200*800). У меня получилось M * (-1,4875). Внезапно знак стал минус, это означает, что платформа после выстрела поехала в обратную сторону. А её скорость равна как раз найденный импульс, делить на массу, то есть именно v = -1,4875 м/с.
Есть ответ на первый вопрос. Перейдём ко второму. Тут надо найти силу трения, а она равна весу платформы, умножить на коэфф.трения. Fтр = М * g * мю.
Итак, платформа поехала влево с начальной скоростью v, и на неё действует постоянная сила Fтр, значит движение имеет постоянное отрицательное ускорение а = Fтр / М = (М * g * мю ) / М = g * мю.
Остался последний шаг - подставляем в формулу "без времени" s = v^2 / (2 * a ) = (1,4875)^2 / (2 * g * мю ) = 1,4875^2 / (2*9,81*0,07) = 1,611 м. Точнее, если с учётом знака (платформа-то едет влево), то расстояние s = -1,611 м.
Ну, у меня так получилось. Проверь. Может где ошибся.