В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Ly3577
Ly3577
05.01.2021 11:04 •  Физика

выполнить кластер))
Дам ещё 10б)

Показать ответ
Ответ:
диана2471
диана2471
24.05.2021 00:55
Материальная точка – это понятие, вводимое в механике для обозначения тела, которое рассматривается как точка, имеющая массу.
Материальная точка позволяет определять положение тела, независимо от размеров, формы и т.п.
К примеру, для определения средней скорости движения самолета из Москвы и в Краснодар его лучше принять за материальную точку, не принимая в расчет его размеры и формы, которые в данном случае не имеют значения.
НО!

Тело можно считать материальной точкой только в тех случаях, когда его размеры, форма, вращение не имеют существенного значения в условиях решаемой задачи и ими можно пренебречь.
Возьмем для примера тот же самолет. При вычислении силы сопротивления воздуха, действующей на самолет, его размеры и форма имеют принципиальное значение – а значит, в этом случае самолет нельзя принять за материальную точку.
0,0(0 оценок)
Ответ:
milton555
milton555
06.02.2021 21:17
Дано:
m_{1}=1 кг
l=0,9 м
\alpha =39°
m_{2}=0,01 кг
v_{2}=300 м/с
v_{2}'=200 м/с

Найти:
\beta - ?

Решение:

1) Изначально шар находится на некоторой высоте h1 с длиной нити l. Затем его опускают и в положении дальнейшего соударения с пулей шар имеет скорость V1. Запишем закон сохранения энергии:

m_{1}g h_{1}= \frac{ m_{1} v_{1}в }{2}

Сокращаем m1. Рассмотрим cosα:

cos \alpha = \frac{l- h_{1} }{l}


Откуда выводим h1:

h_{1}=l(1- cos \alpha )

Выводим из ЗСЭ V1, подставляя формулу для h1:

v_{1}= \sqrt{2gl(1-cos \alpha )}

2) Закон сохранения импульса по горизонтали для пули и шара, спроецированный на некоторую ось ОХ, направленную в сторону движения пули, имеет вид:

m_{2} v_{2}- m_{1} v_{1}= m_{2} v_{2}'- m_{1} v_{1}',

где V1' - скорость шара после соударения с пулей. Выведем ее:

v_{1}'= \sqrt{2gl(1-cos \alpha )}- \frac{ m_{2}( v_{2}- v_{2}') }{ m_{1} } \\ \\ 
 v_{1}'= \sqrt{20*0,9*0,5}- \frac{0,01*100}{1}=3-1=2

3) Закон сохранения энергии для шара после соударения с пулей:

\frac{ m_{1} v_{1}'в }{2}= m_{1}g h_{2}

При этом h2 аналогично h1 равен:

h_{2} =l(1-cos \beta )

Перепишем ЗСЭ в виде:

v_{1}'в=2gl-2glcos \beta

Откуда cosβ:

cos \beta =1- \frac{ v_{1}'в }{2gl} =1- \frac{4}{18} = \frac{14}{18}= \frac{7}{9}=39°
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота