Решение. При движении лифта с постоянным ускорением a сила натяжения нити маятника T в положении его равновесия относительно кабины лифта определяется из второго закона Ньютона: ma = mg − T, откуда T = m(g − a). В последней формуле a − величина алгебраическая: положительная, когда ускорение лифта направлено вниз, и отрицательная, когда ускорение направлено вверх. Отсюда следует, что при отклонении маятника сила, возвращающая его к положению равновесия, будет пропорциональна не g, а (g − a). Это означает, что в лифте, движущемся с ускорением a, маятник длиной l имеет период T1 = 2π√{l/(g − a)}.По условию задачи Т1 = 15/10 = 1,5 с. Взяв отношение периодов колебаний маятника в лифте, движущемся с ускорением, и в неподвижном лифте и возведя в квадрат, получим (T1/T)2 = g/(g − a), откуда находим ответ: a = g × {1 − (T/T1)²} = 9,8*(1-(1/1,5)²) =9,8*(1- 0.444444) =9,8* 0.555556 = 5.444444 м/с². ответ положительный, значит, лифт движется с ускорением, направленным вниз; направление скорости роли не играет.
При движении лифта с постоянным ускорением a сила натяжения нити маятника T в положении его равновесия относительно кабины лифта определяется из второго закона Ньютона:
ma = mg − T,
откуда
T = m(g − a).
В последней формуле a − величина алгебраическая: положительная, когда ускорение лифта направлено вниз, и отрицательная, когда ускорение направлено вверх.
Отсюда следует, что при отклонении маятника сила, возвращающая его к положению равновесия, будет пропорциональна не g, а (g − a). Это означает, что в лифте, движущемся с ускорением a, маятник длиной l имеет период
T1 = 2π√{l/(g − a)}.По условию задачи Т1 = 15/10 = 1,5 с.
Взяв отношение периодов колебаний маятника в лифте, движущемся с ускорением, и в неподвижном лифте и возведя в квадрат, получим
(T1/T)2 = g/(g − a),
откуда находим ответ:
a = g × {1 − (T/T1)²} = 9,8*(1-(1/1,5)²) =9,8*(1- 0.444444) =9,8* 0.555556 = 5.444444 м/с².
ответ положительный, значит, лифт движется с ускорением, направленным вниз; направление скорости роли не играет.
63 мГн
Объяснение:
Дано:
Wэ = 0,5 мДж = 0,5*10⁻³ Дж
ν = 400 кГц = 4*10⁵ Гц
qmax = 50 нКл = 50*10⁻⁹ Кл
L - ?
Запишем формулу Томсона:
T = 2π*√ (L*C)
Возведем обе части в квадрат:
T² = 4*π²*L*C
Отсюда индуктивность катушки:
L = T² / (4*π²*C) (1)
Итак, нам надо знать период T и емкость конденсатора С.
1) Период колебаний:
T = 1 / υ = 1 / 4*10⁵ = 2,5*10⁻⁶ c
2)
Емкость конденсатора найдем из формулы:
Wэ = q² / (2*C)
C = q² / (2*Wэ) = (50*10⁻⁹)² / (2*0,5*10⁻³) = 2,5*10⁻¹² Ф
3)
Найденные величины подставляем в формулу (1)
L = T² / (4*π²*C) = (2,5*10⁻⁶ )² / (4*3,14²* 2,5*10⁻¹²) ≈ 0,063 Гн или 63 мГн