Тема. Решение задач по теме "Интерференция в тонких пластинках. Кольца Ньютона".
Цели:
- рассмотреть условия максимума и минимума интерференции в тонких плоскопараллельных и клиновидных пластинках,
- рассмотреть условия получения колец Ньютона, определение радиуса колец.
Ход занятия.
В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.
Перед решением задач необходимо повторить основные условия, при которых наблюдается интерференция: когерентность волн, длина когерентности, условия максимума и минимума интерференции.
Обратите внимание на метод получения когерентных волн в рассматриваемых задачах - метод деления амплитуды.
Несколько задач предлагается с объяснением их решения. В задачах рассмотрено получение полос равного наклона (плоскопараллельная пластинка) и равной толщины (оптический клин и кольца Ньютона). Получены условия максимума и минимума интерференции в проходящем и отраженном свете.
Качественные задачи.
1. Если на влажный асфальт упадет капля бензина, то получившееся пятно в солнечном свете окрашивается в различные цвета. Объясните явление/.
2. Если поверхность оптического стекла покрыть прозрачной пленкой, показатель преломления которой меньше показателя преломления стекла, а толщина пленки равна (λ-длина волны падающего света), то поверхность стекла вовсе не будет отражать свет, то есть весь свет будет проходить через стекло. Объясните смысл такого приема объективов современных оптических приборов.
3. Выдувая мыльный пузырь и наблюдая за ним в отраженном свете, можно заметить на его поверхности радужные цвета. Объясните это явление.
Примеры решения расчетных задач
Задача 1. Пленка с показателем преломления n = 1,5 освещается светом с длиной волны λ=6 ·10-5 см. Световые волны рас по нормали к поверхности пленки. При каких толщинах d пленки интерференционные полосы, наблюдаемые на ее поверхности, исчезают?
Из падающей по нормали на поверхность пленки волны после отражения образуются две когерентные волны 1 и 2 ( рис . 1 ). Оптическая разность хода между ними с учетом потери в точке С равна . Для светлых полос Δ = k λ, то есть .
Минимальная толщина пленки, при которой наблюдаются светлые полосы в отраженном свете на поверхности пленки, соответствует k = 0, следовательно,. Если , полосы исчезают . Таким образом,
Обертальний рух – це рух тіла, при якому точки описують кола, розміщені в паралельних площинах, причому центри всіх кіл розташовуються на одній прямій, яка зазвичай визначається як вісь обертання. Обертальний рух являє траєкторію у вигляді кривої лінії, а швидкість в кожній точці кривої лінії направлена по дотичній. Кінематика обертального руху характеризується: – Кутовий швидкістю і позначається ю; – Кутовим прискоренням і позначається е. Кутова швидкість – це швидкість обертального руху, яка визначається відношенням кута повороту радіуса, що з’єднує рух тіло з центром кола, до часу, за який був здійснений поворот. Кутова швидкість є векторною величиною, де його кутовий вектор швидкості спрямований в тому ж напрямку, що і поступальний рух правого гвинта (правило буравчика), де відбувається рух по колу. Якщо обертальний рух збігається з обертанням рукоятки буравчика, то поступальний рух буравчика буде вказувати на напрямок кутової швидкості і кутового прискорення, тому вони сонаправлени. Фізичний зміст кутової швидкості при обертальному русі: кутова швидкість буде рівна куту повороту радіуса за одиницю часу. Доцентровийприскорення – це таке прискорення, яке утворюється при русі тіла по колу і направлено до центру по радіусу кола. Доцентрове прискорення дорівнює відношенню квадрата швидкості до радіусу кола. Фізичний зміст кутового прискорення: при обертальному русі кутове прискорення буде визначатися як зміна кутової швидкості за одиницю часу. (Прости но нашла только на украинском)
Практическое занятие № 2
Тема. Решение задач по теме "Интерференция в тонких пластинках. Кольца Ньютона".
Цели:
- рассмотреть условия максимума и минимума интерференции в тонких плоскопараллельных и клиновидных пластинках,
- рассмотреть условия получения колец Ньютона, определение радиуса колец.
Ход занятия.
В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.
Перед решением задач необходимо повторить основные условия, при которых наблюдается интерференция: когерентность волн, длина когерентности, условия максимума и минимума интерференции.
Обратите внимание на метод получения когерентных волн в рассматриваемых задачах - метод деления амплитуды.
Несколько задач предлагается с объяснением их решения. В задачах рассмотрено получение полос равного наклона (плоскопараллельная пластинка) и равной толщины (оптический клин и кольца Ньютона). Получены условия максимума и минимума интерференции в проходящем и отраженном свете.
Качественные задачи.
1. Если на влажный асфальт упадет капля бензина, то получившееся пятно в солнечном свете окрашивается в различные цвета. Объясните явление/.
2. Если поверхность оптического стекла покрыть прозрачной пленкой, показатель преломления которой меньше показателя преломления стекла, а толщина пленки равна (λ-длина волны падающего света), то поверхность стекла вовсе не будет отражать свет, то есть весь свет будет проходить через стекло. Объясните смысл такого приема объективов современных оптических приборов.
3. Выдувая мыльный пузырь и наблюдая за ним в отраженном свете, можно заметить на его поверхности радужные цвета. Объясните это явление.
Примеры решения расчетных задач
Задача 1. Пленка с показателем преломления n = 1,5 освещается светом с длиной волны λ=6 ·10-5 см. Световые волны рас по нормали к поверхности пленки. При каких толщинах d пленки интерференционные полосы, наблюдаемые на ее поверхности, исчезают?
Из падающей по нормали на поверхность пленки волны после отражения образуются две когерентные волны 1 и 2 ( рис . 1 ). Оптическая разность хода между ними с учетом потери в точке С равна . Для светлых полос Δ = k λ, то есть .
Минимальная толщина пленки, при которой наблюдаются светлые полосы в отраженном свете на поверхности пленки, соответствует k = 0, следовательно,. Если , полосы исчезают . Таким образом,
м = 10-4 мм.
ответ: м = 10-4 мм.
Объяснение:
Надеюсь это тебе решить задачу