А расстояния от координатных осей до центра тяжести:
Хцт1=0,5а
Уцт1=1,5а
У второй пластины площадь a^2
расстояния от координатных осей до центра тяжести:
Хцт2=1,5а
Уцт1=0,5а
Центр тяжести можно найти если просуммировать площади умноженные на расстояние до центра тяжести каждой простой фигуры, а потом эту сумму поделить на общую площадь.
По поводу ответа Сергея Гаврилова: силовые линии электростатического поля еще как пересекаются. Достаточно вспомнить картину силовых линий точечного заряда. Они все пересекаются в той точке, где находится заряд. И да, в этой точке направление электрического поля неоднозначно, как и сказал Сергей Гаврилов. А величина его равна нулю. И силовые линии пОля двух одинаковых точечных зарядов одного знака тоже пересекаются - точно в середине между зарядами. И поле в этой точке тоже равно нулю. Это вообще характерное заблуждение по поводу электростатических полей: считать, что их силовые линии не могут пересекаться. На самом деле - могут, но только в точках, где величина поля равна нулю.
Объяснение:
Пластина делится на две прямоугольные части.
У прямоугольника центр тяжести в середине.
У первой - заштрихованной пластины площадь 3a^2
А расстояния от координатных осей до центра тяжести:
Хцт1=0,5а
Уцт1=1,5а
У второй пластины площадь a^2
расстояния от координатных осей до центра тяжести:
Хцт2=1,5а
Уцт1=0,5а
Центр тяжести можно найти если просуммировать площади умноженные на расстояние до центра тяжести каждой простой фигуры, а потом эту сумму поделить на общую площадь.
Общая площадь фигуры 4а^2
Остается посчитать
Хц.т.=(3a^2*0,5а+a^2*1,5а)/4а^2=3а^3/4а^2=3а/4=0,75а
Уц.т.=(3a^2*1,5а+a^2*0,5а)/4а^2=3а^3/4а^2=5а/4=1,25а
Картинка приложена