Нам нужно найти расстояние от конечного изображения до предмета. Сначала найдём расстояние от первой линзы до первого изображения по формуле тонкой линзы:
1/d1 + 1/f1 = 1/F1
F1 - это обратная величина D1, тогда:
1/d1 + 1/f1 = 1/(1/D1) = D1
1/f1 = D1 - 1/d1
f1 = 1/(D1 - 1/d1) = 1/(5 - 1/0,4) = 0,4 м
Теперь выясним расстояние от второй линзы до первого изображения. Если линза находится в метре от предмета, а первое изображение - в d1 + f1 = 0,4 + 0,4 = 0,8 м от предмета, то расстояние d2 равно:
d2 = x2 - (d1 + f1) = 1 - 0,8 = 0,2 м
Далее снова используем формулу тонкой линзы, чтобы узнать расстояние от второго изображения до второй линзы:
1/d2 + 1/f2 = D2
1/f2 = D2 - 1/d2
f2 = 1/(D2 - 1/d2) = 1/(6 - 1/0,2) = 1 м
Значит расстояние от конечного изображения до предмета равно:
Х = х2 + f2 = 1 + 1 = 2 м
Поперечное увеличение, даваемое системой линз, равно линейному увеличению второй линзы, т.к. первая линза не увеличивает изображение предмета из-за того, что предмет расположен на двойном фокусном расстоянии от неё:
так если температура идеального газа уменьшится в 3 раза ,то и давление газа на стенки сосуда тоже уменьшится. Если будет антологичная задача ,только со значениями ,можно проверить подставив их в 1 формулу можно конечно по этой формуле ,выражать от сюда "p" и так делее p=1/3nmv^2 ,но это немного проблемно ,лучше воспользоваться другой формулой ,но если нужно ты выражай из самой первой формулы . Воспользуемся формулой идеального газа PV=nRT n-число молей газа P- давление газа V-объём газа T-температура газа R-постоянная (≈0,082 л*атм/мол*К) так как сосуд закрытый ,а газ занимает весь предоставленный ему объём ,то n=C R=C V=C C-const (постоянная) преобразуем и получаем p1/T1=p2/T2 T2=T1/3 Теперь просто ищем p2 но нужно учитывать,что p/T=C
Дано:
x1 = d1 = 40 см = 0,4 м
D1 = 5 дптр
x2 = 100 см = 1 м
D2 = 6 дптр
Г, Х - ?
Нам нужно найти расстояние от конечного изображения до предмета. Сначала найдём расстояние от первой линзы до первого изображения по формуле тонкой линзы:
1/d1 + 1/f1 = 1/F1
F1 - это обратная величина D1, тогда:
1/d1 + 1/f1 = 1/(1/D1) = D1
1/f1 = D1 - 1/d1
f1 = 1/(D1 - 1/d1) = 1/(5 - 1/0,4) = 0,4 м
Теперь выясним расстояние от второй линзы до первого изображения. Если линза находится в метре от предмета, а первое изображение - в d1 + f1 = 0,4 + 0,4 = 0,8 м от предмета, то расстояние d2 равно:
d2 = x2 - (d1 + f1) = 1 - 0,8 = 0,2 м
Далее снова используем формулу тонкой линзы, чтобы узнать расстояние от второго изображения до второй линзы:
1/d2 + 1/f2 = D2
1/f2 = D2 - 1/d2
f2 = 1/(D2 - 1/d2) = 1/(6 - 1/0,2) = 1 м
Значит расстояние от конечного изображения до предмета равно:
Х = х2 + f2 = 1 + 1 = 2 м
Поперечное увеличение, даваемое системой линз, равно линейному увеличению второй линзы, т.к. первая линза не увеличивает изображение предмета из-за того, что предмет расположен на двойном фокусном расстоянии от неё:
Г = H/h = f2/d2 = 1/0,2 = 5
ответ: 2 м, 5.
формула давления идеального газа
так если температура идеального газа уменьшится в 3 раза ,то и давление газа на стенки сосуда тоже уменьшится.
Если будет антологичная задача ,только со значениями ,можно проверить подставив их в 1 формулу
можно конечно по этой формуле ,выражать от сюда "p" и так делее
p=1/3nmv^2 ,но это немного проблемно ,лучше воспользоваться другой формулой ,но если нужно ты выражай из самой первой формулы .
Воспользуемся формулой идеального газа
PV=nRT
n-число молей газа
P- давление газа
V-объём газа
T-температура газа
R-постоянная (≈0,082 л*атм/мол*К)
так как сосуд закрытый ,а газ занимает весь предоставленный ему объём ,то
n=C
R=C
V=C
C-const (постоянная)
преобразуем и получаем
p1/T1=p2/T2
T2=T1/3
Теперь просто ищем p2
но нужно учитывать,что p/T=C
и ответ будет уменьшилось в 3 раза