q = 5*10^-4cos(10^3πt), С= 10 пФ = 10*10^-12 Ф. 1.Найдите: А) Амплитуду колебаний заряда. В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл. Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c. В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц. Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени: Из формулы емкости конденсатора С=q/U имеем u(t) = q(t)/C = (5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A. Значит i(t) =1,57cos(10^3πt+π/2).
Решение: Средняя скорость автомобиля равна: Vср.=(S1+S2)/(t1+t2) Расстояние первой части пути, проехавшего автомобиля составляет: S=V*t S1=4v/5*t1=4v*t1/5 Расстояние второй части пути, проехавшего автомобиля составляет: S2=2v*t2 А так как средняя скорость на всём пути равна 2v, составим уравнение: (4v*t1/5+2v*t2)/(t1+t2)=v 4v*t1/5+2v*t2=v*(t1+t2) приведём уравнение к общему знаменателю 5 4v*t1+5*2v*t2=5*v*(t1+t2) v*(4t1+10t2)=v*(5t1+5t2) Разделим левую и правую части уравнения на (v) 4t1+10t2=5t1+5t2 4t1-5t1=5t2-10t2 -t1=-5t2 умножим левую и правую части уравнения на (-1) t1=5t2 Отсюда следует, что соотношение времени равно: t1/t2=1/5
1.Найдите:
А) Амплитуду колебаний заряда.
В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл.
Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c.
В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц.
Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени:
Из формулы емкости конденсатора С=q/U имеем
u(t) = q(t)/C =
(5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A.
Значит i(t) =1,57cos(10^3πt+π/2).
Средняя скорость автомобиля равна:
Vср.=(S1+S2)/(t1+t2)
Расстояние первой части пути, проехавшего автомобиля составляет: S=V*t
S1=4v/5*t1=4v*t1/5
Расстояние второй части пути, проехавшего автомобиля составляет:
S2=2v*t2
А так как средняя скорость на всём пути равна 2v, составим уравнение:
(4v*t1/5+2v*t2)/(t1+t2)=v
4v*t1/5+2v*t2=v*(t1+t2) приведём уравнение к общему знаменателю 5
4v*t1+5*2v*t2=5*v*(t1+t2)
v*(4t1+10t2)=v*(5t1+5t2) Разделим левую и правую части уравнения на (v)
4t1+10t2=5t1+5t2
4t1-5t1=5t2-10t2
-t1=-5t2 умножим левую и правую части уравнения на (-1)
t1=5t2
Отсюда следует, что соотношение времени равно:
t1/t2=1/5