Решение задачи: Вода массой m1 при теплообмене нагреется до некоторой температуры t, а вода массой m2 – остынет до той же температуры. Запишем уравнение теплового баланса: Q1=Q2 Здесь Q1 – количество теплоты, полученное водой массой m1 при теплообмене, а Q2 – количество теплоты, отданное водой массой m2. cm1(t–t1)=cm2(t2–t) m1(t–t1)=m2(t2–t) Раскроем скобки в обеих частях равенства: m1t–m1t1=m2t2–m2t В левую часть перенесем члены с множителем t, а в правую – все оставшиеся. m1t+m2t=m1t1+m2t2 t(m1+m2)=m1t1+m2t2 t=m1t1+m2t2m1+m2 Задача решена в общем виде. Можно подставить значения величин без перевода в систему СИ, тогда ответ мы получим в градусах Цельсия. t=50⋅20+100⋅8050+100=60∘C=333К
Схема состоит из:
группы сопротивлений R₂ и R₂', соединенных последовательно,
сопротивления R₃, соединенного параллельно с первой группой,
сопротивления R₁, соединенного последовательно с первыми двумя группами.
Преобразовать схему можно так: (см. рис.1)
Тогда общее сопротивление R₂ и R₂':
R₂₂ = R₂ + R₂' = 20 + 20 = 40 (Ом)
То есть сопротивления R₂ и R₂' можно заменить одним сопротивлением R₂₂ = 40 (Ом) (см. рис.2)
Общее сопротивление R₂₂ и R₃:
R₂₂₃ = R₂₂•R₃ : (R₂₂+R₃) = 40•60 : 100 = 24 (Ом)
Общее сопротивление цепи с учетом R₁:
R = R₁ + R₂₂₃ = 6 + 24 = 30 (Ом)
Общий ток в цепи:
I = I₁ = U/R = 240 : 30 = 8 (A)
Напряжение на первом сопротивлении:
U₁ = I · R₁ = 8 · 6 = 48 (B)
Напряжение на группе сопротивлений R₂₂₃:
U₂₂₃ = U - U₁ = 240 - 48 = 192 (B)
Ток, протекающий через R₃:
I₃ = U₂₂₃ : R₃ = 192 : 60 = 3,2 (A)
Ток, протекающий через R₂₂:
I₂₂ = U₂₂₃ : R₂₂ = 192 : 40 = 4,8 (A)
Напряжение на R₂ и R₂':
U₂ = U₂' = R₂I₂₂ = R₂'I₂₂ = 20 · 4,8 = 96 (B)
*ответ*333
Объяснение:
Решение задачи: Вода массой m1 при теплообмене нагреется до некоторой температуры t, а вода массой m2 – остынет до той же температуры. Запишем уравнение теплового баланса: Q1=Q2 Здесь Q1 – количество теплоты, полученное водой массой m1 при теплообмене, а Q2 – количество теплоты, отданное водой массой m2. cm1(t–t1)=cm2(t2–t) m1(t–t1)=m2(t2–t) Раскроем скобки в обеих частях равенства: m1t–m1t1=m2t2–m2t В левую часть перенесем члены с множителем t, а в правую – все оставшиеся. m1t+m2t=m1t1+m2t2 t(m1+m2)=m1t1+m2t2 t=m1t1+m2t2m1+m2 Задача решена в общем виде. Можно подставить значения величин без перевода в систему СИ, тогда ответ мы получим в градусах Цельсия. t=50⋅20+100⋅8050+100=60∘C=333К