В задачах части «С» необходимо описывать все параметры, которых нет в дано, иначе оценку снижают на один .
Поэтому пишем:
L – расстояние по горизонтали между первым и вторым ударами о плоскость.
Нарисуем наклонную плоскость и начальную скорость шарика \overrightarrow{\mkern -5mu V_0}. Как известно из геометрии, углы с перпендикулярными сторонами равны. Начальная скорость шарика перпендикулярна основанию наклонной плоскости. Восстановим перпендикуляр к наклонной плоскости в точке падения на нее шарика. Тогда угол между этим перпендикуляром и вектором начальной скорости равен углу наклона плоскости к горизонту (углы с перпендикулярными сторонами, зеленые пунктирные линии на рисунке). Угол падения шарика (с перпендикуляром) равен углу отражения \alpha = 30^{\circ}. Тогда угол между начальной скоростью отскочившего шарика и наклонной плоскостью равен \beta = 90^{\circ} - \alpha = 90^{\circ} - 30^{\circ} = 60^{\circ} = 2 \alpha. Модуль скорости не меняется, так как удар упругий.
Масса горячей воды, m. кг 0,1
Начальная температура холодной воды, t1, С градуссов 20
Температура смеси t2, С градуссов 40
Количество теплоты, отданное горячей водой, Q1, Дж
Масса холодной воды, m1, кг 0,1
Начальная температура горячей воды, t1, С градуссов 68
Количество теплоты полученное холодной водой, Q2,Дж
Q=mc(t-t2)
Q=mc(t-t1)
Ну подставить и все))
с-4200
В задачах части «С» необходимо описывать все параметры, которых нет в дано, иначе оценку снижают на один .
Поэтому пишем:
L – расстояние по горизонтали между первым и вторым ударами о плоскость.
Нарисуем наклонную плоскость и начальную скорость шарика \overrightarrow{\mkern -5mu V_0}. Как известно из геометрии, углы с перпендикулярными сторонами равны. Начальная скорость шарика перпендикулярна основанию наклонной плоскости. Восстановим перпендикуляр к наклонной плоскости в точке падения на нее шарика. Тогда угол между этим перпендикуляром и вектором начальной скорости равен углу наклона плоскости к горизонту (углы с перпендикулярными сторонами, зеленые пунктирные линии на рисунке). Угол падения шарика (с перпендикуляром) равен углу отражения \alpha = 30^{\circ}. Тогда угол между начальной скоростью отскочившего шарика и наклонной плоскостью равен \beta = 90^{\circ} - \alpha = 90^{\circ} - 30^{\circ} = 60^{\circ} = 2 \alpha. Модуль скорости не меняется, так как удар упругий.
Объяснение: