Дано: a=3см/c^2=0,03м/с^2; v1=18км/ч=5м/c; v2=54км/ч=15м/c s-? По условию, оба поезда одинаковый путь, т.е S1=S2; Для первого тела этот путь равен v0t+at^2/2=0,03*t^2/2 Для второго тела этот путь равен v(средняя второго поезда)*t, найдем её: Vср=L/T T=t1+t1 (время на первом участке и время на втором участке); t1=L1/v1=L/2V1; t2=L2/v2=l/2V2; (L1 и L2 - путь на первом и втором участке соответственно); Тогда T=L/2V1+L/2V2=L/2*((V1+V2)/(V1*V2)); Тогда Vср=2(V1*V2)/(V1+V2)=2*5*15/(5+15)=7,5м/c; S1=S2; 0,03t^2/2=7,5t; 0,03t^2=15t; 0,03t=15; t=15/0,03=500с; Оба поезда одинаковый путь, поэтому нам достаточно найти путь одного поезда: s=7,5*500=3750 (м) ответ:s=3750 м
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.
a=3см/c^2=0,03м/с^2;
v1=18км/ч=5м/c;
v2=54км/ч=15м/c
s-?
По условию, оба поезда одинаковый путь, т.е S1=S2;
Для первого тела этот путь равен
v0t+at^2/2=0,03*t^2/2
Для второго тела этот путь равен
v(средняя второго поезда)*t, найдем её:
Vср=L/T
T=t1+t1 (время на первом участке и время на втором участке);
t1=L1/v1=L/2V1;
t2=L2/v2=l/2V2; (L1 и L2 - путь на первом и втором участке соответственно);
Тогда T=L/2V1+L/2V2=L/2*((V1+V2)/(V1*V2));
Тогда Vср=2(V1*V2)/(V1+V2)=2*5*15/(5+15)=7,5м/c;
S1=S2;
0,03t^2/2=7,5t;
0,03t^2=15t;
0,03t=15;
t=15/0,03=500с;
Оба поезда одинаковый путь, поэтому нам достаточно найти путь одного поезда:
s=7,5*500=3750 (м)
ответ:s=3750 м
Оба тела движутся равномерно.
х(t)=xo + Vx*t
x1=0 + 11,5 * t
x2=800 - 1 * t
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.