Итак 1. Определим массу одной молекулы кислорода, либо из таблицы, либо из формулы m = M/Na, где M - молярная масса кислорода, Na - число авагадро (всё это табличные данные) 2. Закон сохранения импулься в проекции на нормаль к стенке mV*sin30 = mV/2 = p - mV/2 т.к. удар будем считать абсолютно упругим, а стенку достаточно массивной (её скорость после столкновения стремится к нулю). отсюда: mV = p =>V = p/m = 2υ, где υ - среднеквадратичная скорость. => υ = p/2m 3. Кинетическая энергия одной молекулы связана с температурой следующим соотношением E = ikT/2, где i - количество степеней свободы (у двухатомного газа i =5 ). k - постоянная Больцмана, T - искомая температура. E = mυ²/2 => E = p²/8m = 5kT/2 => T = p²/20mk Как-то так.
1. Определим массу одной молекулы кислорода, либо из таблицы, либо из формулы m = M/Na, где M - молярная масса кислорода, Na - число авагадро (всё это табличные данные)
2. Закон сохранения импулься в проекции на нормаль к стенке
mV*sin30 = mV/2 = p - mV/2 т.к. удар будем считать абсолютно упругим, а стенку достаточно массивной (её скорость после столкновения стремится к нулю).
отсюда: mV = p =>V = p/m = 2υ, где υ - среднеквадратичная скорость.
=> υ = p/2m
3. Кинетическая энергия одной молекулы связана с температурой следующим соотношением E = ikT/2, где i - количество степеней свободы (у двухатомного газа i =5 ). k - постоянная Больцмана, T - искомая температура.
E = mυ²/2 => E = p²/8m = 5kT/2 => T = p²/20mk
Как-то так.
R₁ = r₁L₁/S₁
Сопротивление нихромового проводника
R₂ = r₂L₂/S₂
r₁ = 0,017 Ом·мм²/м - удельное сопротивление меди
L₁ = 10L₂ - длина медного проводника.
L₂ - длина нихромового проводника
S₁ = S₂/4 - сечение медного проводника
S₂ - сечение нихромового проводника, оно в 4 раза больше сечения медного проводника, поскольку диаметр последнего в 2 раза меньше нихромового.
r₂ = 1,1 Ом·мм²/м - удельное сопротивление нихрома.
R₁/R₂ = (r₁L₁/S₁)/(r₂L₂/S₂) = r₁L₁S₂/(r₂L₂S₁) = 0.017*10L₂*S₂*4/(1.1*L₂*S₂) = 0.018*10*4/1.1 = 0.62
R₂ = R₁/0.62 = 1.6R₁
Значит, верный ответ - 3)