В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
НяФФкА555
НяФФкА555
08.06.2020 06:45 •  Физика

Якою є місткість акваріуму з довжиною - 0.50 мм,шириною - 300 мм і висотою - 42 см? нужно обьяснение к формуле 6.3 * 10^{-2}

Показать ответ
Ответ:
nargiz19821129
nargiz19821129
01.02.2021 20:53
ЧЕРЕЗ ТЕОРЕМУ ГАУССА:

\int_o^{S_\Sigma} { E \, dS } = \frac{ | q_\Sigma | }{ \varepsilon_o \varepsilon }
для произвольной замкнутой поверхности окружающий некторый заряд;

Ясно, что поле вокруг такого тела обладает сферической симметрией, а значит поле в любой точке сонаправлено в радиус-вектором, проведённым из центра сферы. Причём, исходя из той же сферической симметри – на равных расстояниях от сферы в любой точке поле имеет одну и ту же напряжённость.

Поэтому для точек    r \geq R    за пределами шара мы можем записать:

4 \pi r^2 E_ = \frac{ | q_\Sigma | }{ \varepsilon_o \varepsilon } = \frac{4 \pi | \rho | R^3}{3 \varepsilon_o \varepsilon } \ ;

E_ = \frac{ | \rho | R^3 }{ 3 \varepsilon_o \varepsilon r^2 } = \frac{ 4 \pi k | \rho | R^3 }{ 3 \varepsilon r^2 } \ ;

А для точек    r \leq R    внутри шара мы можем записать:

4 \pi r^2 E_< = \frac{ | q_r | }{ \varepsilon_o \varepsilon } = \frac{4 \pi | \rho | r^3}{3 \varepsilon_o \varepsilon } \ ;

E_< = \frac{ | \rho | }{ 3 \varepsilon_o \varepsilon } \cdot r = \frac{ 4 \pi k | \rho | }{ 3 \varepsilon } \cdot r \ ;

ЧЕРЕЗ УДЕЛЬНУЮ ФОРМУ ЗАКОНА КУЛОНА ДЛЯ ШАРА:

Для точек    r \geq R    за пределами шара мы можем записать:

E_ = \frac{k}{\varepsilon} \cdot \frac{ | q_\Sigma | }{r^2} = \frac{k}{\varepsilon} \cdot \frac{4 \pi | \rho | R^3}{3 r^2} \ ;

E_ = \frac{ 4 \pi k | \rho | R^3 }{ 3 \varepsilon r^2 } = \frac{ | \rho | R^3 }{3 \varepsilon_o \varepsilon r^2} \ ;

А для точек    r \leq R    внутри шара мы можем записать:

E_< = \frac{k}{\varepsilon} \cdot \frac{ | q_r | }{r^2} = \frac{k}{\varepsilon} \cdot \frac{4 \pi | \rho | r^3}{3 r^2} \ ;

E_< = \frac{ 4 \pi k | \rho | }{ 3 \varepsilon } \cdot r = \frac{ | \rho | }{ 3 \varepsilon_o \varepsilon } \cdot r \ ;

ЧЕРЕЗ УДЕЛЬНУЮ ФОРМУ ЗАКОНА КУЛОНА ДЛЯ СФЕРЫ:

Напряжённость равномерно заряженной сферы за её пределеами равна напряжённости точечного заряда, расположенного вместо сферы в её центре. Тогда:

Для точек    r \geq R    за пределами шара мы можем записать:

E_ = \frac{k}{\varepsilon} \cdot \frac{ | q_\Sigma | }{r^2} = \frac{k}{\varepsilon} \cdot \frac{4 \pi | \rho | R^3}{3 r^2} \ ;

E_ = \frac{ 4 \pi k | \rho | R^3 }{ 3 \varepsilon r^2 } = \frac{ | \rho | R^3 }{3 \varepsilon_o \varepsilon r^2} \ ;

А для точек    r \leq R    внутри шара мы можем записать:

E_< = \frac{k}{\varepsilon} \cdot \frac{ | q_r | }{r^2} = \frac{k}{\varepsilon} \cdot \frac{4 \pi | \rho | r^3 }{ 3 r^2 } \ ;

E_< = \frac{ 4 \pi k | \rho | }{ 3 \varepsilon } \cdot r = \frac{ | \rho | }{ 3 \varepsilon_o \varepsilon } \cdot r \ ;

ОТВЕТ:

E = \{
= \frac{ 4 \pi k | \rho | }{ 3 \varepsilon } \cdot r = \frac{ | \rho | }{ 3 \varepsilon_o \varepsilon } \cdot r \ ,    при    r \leq R \ ;
= \frac{ 4 \pi k | \rho | R^3 }{ 3 \varepsilon r^2 } = \frac{ | \rho | R^3 }{3 \varepsilon_o \varepsilon r^2} \ ,    при    r \geq R \ ; \}

ГРАФИК СМОТРИТЕ В ПРИЛОЖЕННОМ ФАЙЛЕ:

Шар радиуса r заряжен равномерно с объёмной плотностью заряда ρ. определите модуль напряженности пол
0,0(0 оценок)
Ответ:
marina2770
marina2770
17.06.2020 09:51

Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомомстержне в однородном поле сил тяготения[1]. Периодмалых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит[2] от амплитуды колебаний и массымаятника.

Плоский математический маятник со стержнем — система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота