для произвольной замкнутой поверхности окружающий некторый заряд;
Ясно, что поле вокруг такого тела обладает сферической симметрией, а значит поле в любой точке сонаправлено в радиус-вектором, проведённым из центра сферы. Причём, исходя из той же сферической симметри – на равных расстояниях от сферы в любой точке поле имеет одну и ту же напряжённость.
Поэтому для точек за пределами шара мы можем записать:
А для точек внутри шара мы можем записать:
ЧЕРЕЗ УДЕЛЬНУЮ ФОРМУ ЗАКОНА КУЛОНА ДЛЯ ШАРА:
Для точек за пределами шара мы можем записать:
А для точек внутри шара мы можем записать:
ЧЕРЕЗ УДЕЛЬНУЮ ФОРМУ ЗАКОНА КУЛОНА ДЛЯ СФЕРЫ:
Напряжённость равномерно заряженной сферы за её пределеами равна напряжённости точечного заряда, расположенного вместо сферы в её центре. Тогда:
Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомомстержне в однородном поле сил тяготения[1]. Периодмалых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен
и не зависит[2] от амплитуды колебаний и массымаятника.
Плоский математический маятник со стержнем — система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.
для произвольной замкнутой поверхности окружающий некторый заряд;
Ясно, что поле вокруг такого тела обладает сферической симметрией, а значит поле в любой точке сонаправлено в радиус-вектором, проведённым из центра сферы. Причём, исходя из той же сферической симметри – на равных расстояниях от сферы в любой точке поле имеет одну и ту же напряжённость.
Поэтому для точек за пределами шара мы можем записать:
А для точек внутри шара мы можем записать:
ЧЕРЕЗ УДЕЛЬНУЮ ФОРМУ ЗАКОНА КУЛОНА ДЛЯ ШАРА:
Для точек за пределами шара мы можем записать:
А для точек внутри шара мы можем записать:
ЧЕРЕЗ УДЕЛЬНУЮ ФОРМУ ЗАКОНА КУЛОНА ДЛЯ СФЕРЫ:
Напряжённость равномерно заряженной сферы за её пределеами равна напряжённости точечного заряда, расположенного вместо сферы в её центре. Тогда:
Для точек за пределами шара мы можем записать:
А для точек внутри шара мы можем записать:
ОТВЕТ:
при
при
ГРАФИК СМОТРИТЕ В ПРИЛОЖЕННОМ ФАЙЛЕ:
Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомомстержне в однородном поле сил тяготения[1]. Периодмалых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен
и не зависит[2] от амплитуды колебаний и массымаятника.
Плоский математический маятник со стержнем — система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.