Объяснение: Ускорение свобо́дного падения (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести, при исключении из рассмотрения других сил. В соответствии с уравнением движения тел в неинерциальных системах отсчёта[2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.
Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах[3]. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет g = 9,80665 м/с²[4][5]. Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81, 9,8 или, грубо, 10 м/с².
где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), v_1\,\!— первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 371 км) , найдем
v_1\approx\,\!v
1
≈
7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то
v1=\sqrt{gR};.v1=
gR
;.
Космические скорости могут быть вычислены и для поверхности других космических тел. Например на Луне v1 = 1,680 км/с
ответ: h=1,5R
Объяснение: Ускорение свобо́дного падения (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести, при исключении из рассмотрения других сил. В соответствии с уравнением движения тел в неинерциальных системах отсчёта[2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.
Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах[3]. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет g = 9,80665 м/с²[4][5]. Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81, 9,8 или, грубо, 10 м/с².
дано g=gл=1,6 м/с2
h- ?
g= GM/(R+h)^2=GMR^2/R^2(R+h)^2
так как gз=GM/R^2
g= gз*R^2/(R+h)^2
(R+h)^2/R^2=9,8/1,6=6,125
(R+h)/R=√6,125=2,475
1+h/R=2,5
h/R=1,5
h=1,5 R R=6383 км
ответ h=1,5R
v=
G∗M/R
m\frac{v_1^2}{R}=G\frac{Mm}{R^2};m
R
v
1
2
=G
R
2
Mm
;
v_1=\sqrt{G\frac{M}{R}};v
1
=
G
R
M
;
где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), v_1\,\!— первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 371 км) , найдем
v_1\approx\,\!v
1
≈
7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то
v1=\sqrt{gR};.v1=
gR
;.
Космические скорости могут быть вычислены и для поверхности других космических тел. Например на Луне v1 = 1,680 км/с
Объяснение:
вот что-то похожее, извиняюсь если не правильно