1) Рассмотрим положение тела на первом рисунке (груз в правом крайнем положении).
Запишем уравнение движения в виде:
x (t)= Xmax* sin *(2π*t /T + π/2) (это тоже уравнение гармонического колебания начальной фазой).
Если (t = 0) то x(0) = Xmax
Скорость движения груза - первая производная от x: v(t) = (x(t))' = (2π*A/T)*cos ((2π/T) *t + π/2) = Vmax* cos ((2π/T) *t + π/2)
Если (t = 0) то v(0) = 0 (тело остановится)
И, наконец, аналогично находим ускорение тела: a (t)= (x''(t)) = (v'(t)) = - Amax sin ((2π/T) *t + π/2 )
Если (t = 0) то a(0) = - Amax (направление вектора ускорения сменилось на противоположное, сила направлена к положению равновесия)
2) Рассмотрим положение тела на втором рисунке (груз в положении равновесия).
Если (t = T/4) то: x(T/4) = 0 (тело в положении равновесия). v(T/4) = - Vmax (тело проходит положение равновесия с максимальной скоростью. a(T/4)= 0 (равнодействующая сил равна нулю (пружина не растянута).
надеюсь провельно вот
1.
Вычисли массу ядра изотопа Pd. Известно, что нейтронов в ядре изотопа на k = 2меньше, чем протонов. Определи зарядовое и массовое число изотопа.
Массу одного нуклона можно принять равной m1 = 1,67⋅10−27 кг
(Массу вычисли с точностью до сотых).
ответ: ядро изотопа [дробь ]Pd имеет массу m = ? кг.
2. Вычисли удельную энергию связи ядра изотопа азота N715, если дефект массы ядра иона
Δm= 0,12013 а. е. м.
(ответ запиши с точностью до сотых).
ответ: f = МэВ.
3. Определи правильный вариант.
Массовое число близко к массе ядра, выраженной в
а. е. м.
кг
МэВ
мг
4. Определи, чему равны зарядовое и массовое число изотопа B59.
A — [массовое/зарядовое]
число, A=;
Z — [массовое/зарядовое]
число, Z=.
5. Вычисли массу ядра изотопа I. Известно, что нейтронов в ядре изотопа на k = 3больше, чем протонов. Определи зарядовое и массовое число изотопа.
Массу одного нуклона можно принять равной m1 = 1,67⋅10−27 кг
(Массу вычисли с точностью до сотых).
ответ: ядро изотопа [дробь] I , имеет массу m = ? кг.
6. Вычислите энергию связи нуклонов в ядре атома изотопа фтора F916.
Масса ядра изотопа фтора равна m = 16,011467 а. е. м.
Масса свободного протона равна mp = 1,00728 а. е. м.
Масса свободного нейтрона равна mn = 1,00866 а. е. м.
(ответ запиши с точностью до десятых).
ответ: ΔE = МэВ.
Объяснение:
Рассмотрим положение тела на первом рисунке (груз в правом крайнем положении).
Запишем уравнение движения в виде:
x (t)= Xmax* sin *(2π*t /T + π/2) (это тоже уравнение гармонического колебания начальной фазой).
Если (t = 0) то x(0) = Xmax
Скорость движения груза - первая производная от x:
v(t) = (x(t))' = (2π*A/T)*cos ((2π/T) *t + π/2) = Vmax* cos ((2π/T) *t + π/2)
Если (t = 0) то v(0) = 0 (тело остановится)
И, наконец, аналогично находим ускорение тела:
a (t)= (x''(t)) = (v'(t)) = - Amax sin ((2π/T) *t + π/2 )
Если (t = 0) то a(0) = - Amax (направление вектора ускорения сменилось на противоположное, сила направлена к положению равновесия)
2)
Рассмотрим положение тела на втором рисунке (груз в положении равновесия).
Если (t = T/4) то:
x(T/4) = 0 (тело в положении равновесия).
v(T/4) = - Vmax (тело проходит положение равновесия с максимальной скоростью.
a(T/4)= 0 (равнодействующая сил равна нулю (пружина не растянута).
Выбираем ответы:
Б) и Г)