Период колебаний математического маятника зависит от длинны нити и от ускорения свободного падения T1=2*π√L1/g Тогда для второго случая L2=L1*1.44 T2=2*π√L1*1.44/g T2/T1=(2*π√L1*1.44/g)/(2*π√L1/g)=√1.44=1.2 С удлинением нити на 44% период вырос в 1,2 раза Период колебаний математического маятника от массы не зависит.
Период колебаний пружинного маятника зависит от жесткости пружины и от массы груза T1=2*π√m1/k Тогда для второго случая m2=m1*0.8 T2=2*π√m1*0.8/k T2/T1=(2*π√m1*0.8/k)/(2*π√m1/k)=√0.8=0.894==0.9 С уменьшением массы на 20% период уменьшится в 0,9 раз
Дано
vo=10 м/с
<a=45 град
|AB|= 4м
g= 10м/с2
-------------------
∆t -?
РЕШЕНИЕ
Из условия ясно , Камень№2 должен преодолеть расстояние ВА=4 м, чтобы пересечь
траекторию Камня№1 - точка пересечения траекторий только ОДНА.
Определим время встречи камней.
Пусть
t - время движения Камень№2 -вылетел позже
t + ∆t - время движения Камень№1 - вылетел раньше
второй камень
время движения t
направление движения - по траектории
горизонтальное -равномерное
х=vo*cosa*t ; t= x/( vo*cosa)
подставим значения х=|АВ|= 4м
t=4/(10*√2/2) =2√2 /5 c
вертикальное движение - равноускоренное
y=vo*sinа*t-gt^2/2 (1)
время известно, подставим t в (1) , найдем конечную высоту Камень№2
y= vo*sinа*t-gt^2/2 = vo*sinа* Х / ( vo*cosa) -g*( x/( vo*cosa))^2/2= х- g*( x/( vo*cosa))^2/2
y=4- 10*(2√2 /5))^2/2= 2.4 м - это высота , на которой встретятся камни
первый камень
время движения t + ∆t
направление движения строго вертикальное - равноускоренное
уравнение движения
y=vo(t + ∆t )-g(t + ∆t)^2/2
подставим
время t=2√2 /5 c
высота встречи y=2.4 м
остальные значения из условия
найдем ∆t
2.4=10(2√2 /5 + ∆t ) - 10 (2√2 /5 + ∆t)^2/2
преобразуем
2.4=4√2 +10∆t - 5 *(8/25+ 2*2√2 /5* ∆t + ∆t^2)
2.4=4√2 +10∆t - 1.6 - 4√2*∆t - 5∆t^2
0= -2.4+4√2 +10∆t - 1.6 - 4√2*∆t -5∆t^2
0= -4+4√2 +(10 - 4√2)*∆t - 5∆t^2
0= 4(√2-1) +(10 - 4√2)*∆t - 5∆t^2
решим квадратное уравнение
5∆t^2 -(10 -4√2)*∆t - 4(√2 -1) = 0
∆t1=1/5*(5-2√2-√13) ≈ -0.286796
∆t2=1/5*(5-2√2+√13) ≈ 1.15542
по смыслу задачи ∆t ≈ 1.15542
ответ ∆t ≈ 1.15542
T1=2*π√L1/g
Тогда для второго случая L2=L1*1.44
T2=2*π√L1*1.44/g
T2/T1=(2*π√L1*1.44/g)/(2*π√L1/g)=√1.44=1.2
С удлинением нити на 44% период вырос в 1,2 раза
Период колебаний математического маятника от массы не зависит.
Период колебаний пружинного маятника зависит от жесткости пружины и от массы груза
T1=2*π√m1/k
Тогда для второго случая m2=m1*0.8
T2=2*π√m1*0.8/k
T2/T1=(2*π√m1*0.8/k)/(2*π√m1/k)=√0.8=0.894==0.9
С уменьшением массы на 20% период уменьшится в 0,9 раз