Пусть l - длина эскалатора. vш = (1/2)vб скорость шагающего пассажира, равная половине скорости бегущего. v - скорость эскалатора. время поездки на эскалаторе l/v больше времени, когда пассажир шагает l/(v+vш) на 10 секунд: l/v - l/(v+vш) = 10 (1) время поездки на эскалаторе l/v больше времени, когда пассажир бежит со скоростью 2vш на 15 секунд: l/v - l/(v+2vш) = 15 (2) налицо два уравнения, из которых можно получить выражения для v и vш. выражая vш из уравнения (1) получаем: vш = 10v^2/(l - 10v) (3); подставляем выражение (3) теперь в уравнение (2) после муторной получаем выражение для v: v = l/30 (4). подставляя теперь выражение (4) в (3) находим vш = l/60 нам предлагают найти время, за которое l/2 пути пассажир проехал со скоростью эскалатора v, а вторую половину пути l/2 прошел со скоростью vш: t = l/(2v) + l/(2vш) = l*30/(2l) + l*60/(2l) = 15 + 30 = 45 сек.
N - мощность горелки,
t - искомое время,
Q - затраченное количество теплоты.
Разберемся поэтапно с Q.
На что наша горелка будет затрачивать энергию?
- плавление льда: λ m(л)
- нагрев образовавшейся воды до температуры кипения от начальной - нуля: c m(л) (100 - 0) = 100 c m(л)
- нагрев воды, которая уже находилась в сосуде: c m(в) (100 - 0) = 100 с m(в)
Таким образом, Q = λ m(л) + 100 c m(л) + 100 с m(в).
Запишем найденную формулу Q в формулу мощности:
N = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / t,
откуда искомое время t:
t = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / N.
Упростим выражение (выносим сотню и удельную теплоемкость воды за скобки):
t = ( λ m(л) + 100 c (m(л) + m(в)) ) / N,
t = ( 335*10^3 * 35*10^-2 + 10^2 * 42*10^2 * 9*10^-1) / 1,5*10^3,
t = (117250 + 378000) / 1,5*10^3,
t = (117,25 + 378) / 1,5 ≈ 330,16 c ≈ 5,5 мин