Запишем 2 закон Ньютона в векторной форме для вытаскивания ящика по наклонной плоскости: m * a = Fт + m * g + N + Fтр, где Fт – сила, с которой тянут тело вверх, направленная вдоль наклонной плоскости, m * g - сила тяжести, N - сила реакции поверхности наклонной плоскости, Fтр - сила трения.
Так как по условию задачи его тянут равномерно а = 0 м/с2, то формула 2 закона Ньютона примет вид: : 0 = Fт + m * g + N + Fтр. Действие всех сил на тело скомпенсированы.
Запишем 2 закон Ньютона для проекций на координатные оси:
ОХ: 0 = Fт - Fтр - m * g * sinα.
ОУ: 0 = - m * g * cosα + N.
Fт = Fтр + m * g * sinα.
N = m * g * cosα.
Силу трения ящика о наклонную плоскость Fтр выразим формулой: Fтр = μ * N = μ * m * g * cosα.
Сила Fт, с которой тянут ящик, будет определяться формулой: Fт = μ * m * g * cosα + m * g * sinα = m * g (μ * cosα + sinα).
Fт = 30 кг * 10 м/с2 * ( 0,3 * 0,866 + 0,5) = 228 Н.
ответ: для равномерного втаскивания ящика по наклонной плоскости необходимо приложить силу Fт = 228 Н.
Задача, при таком условии, имеет решение только в том случае, если и туда, и обратно Красная Шапочка перемещалась по одной и той же дороге. Правда, в этом случае, данные о движении к дому бабушки (6 км/ч и 4 км/ч) являются лишними и никак в решении задачи не участвуют.
Так как путь, пройденный Красной Шапочкой до дома бабушки, равен обратному пути, то рассмотрим возвращение Красной Шапочки домой.
Первая часть пути (на велосипеде):
S₁ = v₁t₁ = 8 · 1 = 8 (км)
Вторая часть пути (пешком):
S₂ = v₂t₂ = 3 · 1/3 = 1 (км)
Таким образом общее расстояние от дома бабушки до дома Красной Шапочки и, соответственно, искомое расстояние от дома Красной Шапочки до дома бабушки :
S = S₁ + S₂ = 8 + 1 = 9 (км)
Значения скорости 6 км/ч и 4 км/ч можно применить для нахождения времени, которое затратила Красная Шапочка на дорогу к дому бабушки:
m = 30 кг.
g = 10 м/с2.
а = 0 м/с2.
∠α = 30°.
μ = 0,5.
Fт - ?
Запишем 2 закон Ньютона в векторной форме для вытаскивания ящика по наклонной плоскости: m * a = Fт + m * g + N + Fтр, где Fт – сила, с которой тянут тело вверх, направленная вдоль наклонной плоскости, m * g - сила тяжести, N - сила реакции поверхности наклонной плоскости, Fтр - сила трения.
Так как по условию задачи его тянут равномерно а = 0 м/с2, то формула 2 закона Ньютона примет вид: : 0 = Fт + m * g + N + Fтр. Действие всех сил на тело скомпенсированы.
Запишем 2 закон Ньютона для проекций на координатные оси:
ОХ: 0 = Fт - Fтр - m * g * sinα.
ОУ: 0 = - m * g * cosα + N.
Fт = Fтр + m * g * sinα.
N = m * g * cosα.
Силу трения ящика о наклонную плоскость Fтр выразим формулой: Fтр = μ * N = μ * m * g * cosα.
Сила Fт, с которой тянут ящик, будет определяться формулой: Fт = μ * m * g * cosα + m * g * sinα = m * g (μ * cosα + sinα).
Fт = 30 кг * 10 м/с2 * ( 0,3 * 0,866 + 0,5) = 228 Н.
ответ: для равномерного втаскивания ящика по наклонной плоскости необходимо приложить силу Fт = 228 Н.
Задача, при таком условии, имеет решение только в том случае, если и туда, и обратно Красная Шапочка перемещалась по одной и той же дороге. Правда, в этом случае, данные о движении к дому бабушки (6 км/ч и 4 км/ч) являются лишними и никак в решении задачи не участвуют.
Так как путь, пройденный Красной Шапочкой до дома бабушки, равен обратному пути, то рассмотрим возвращение Красной Шапочки домой.
Первая часть пути (на велосипеде):
S₁ = v₁t₁ = 8 · 1 = 8 (км)
Вторая часть пути (пешком):
S₂ = v₂t₂ = 3 · 1/3 = 1 (км)
Таким образом общее расстояние от дома бабушки до дома Красной Шапочки и, соответственно, искомое расстояние от дома Красной Шапочки до дома бабушки :
S = S₁ + S₂ = 8 + 1 = 9 (км)
Значения скорости 6 км/ч и 4 км/ч можно применить для нахождения времени, которое затратила Красная Шапочка на дорогу к дому бабушки:
t = S₁/v₁ + S₂/v₂ = 9·1/3 : 6 + 9·2/3 : 4 = 0,5 + 1,5 = 2 (ч)
Теперь можно найти среднюю скорость:
Средняя скорость движения Красной Шапочки на всем пути к дому бабушки и обратно есть отношение всего пройденного расстояния ко всему времени движения:
v(cp.) = S'/t' = 2S : (t + (t₁+t₂)) = 18 : (2 + 4/3) = 18 : 10/3 =
= 18 · 0,3 = 5,4 (км/ч)
Объяснение: