1. Импульс момента силы, Mdt, действующий на вращательное тело, равен изменению его момента импульса dL: Mdt = d(Jω) или Mdt = dL Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt) Jdω = d(Jω) – изменение момента импульса тела, Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.
2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью ω = dφ/dt (измеряется в рад/с) и угловым ускорением ε = d²φ/dt² (измеряется в рад/с²). При равномерном вращении (T оборотов в секунду), Частота вращения — число оборотов тела в единицу времени: f = 1/T = ω/2 Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением T = 1/f
Линейная скорость точки, находящейся на расстоянии R от оси вращения
Угловая скорость вращения тела ω = f/Dt = 2/T
Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде: E=
В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: =∑
где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
3. Маятник представляет собой замкнутую систему. Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю. Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается. В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке. Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной. Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной. (Сумма кинетической и потенциальной энергии тел называется полной механической энергией)
Mdt = d(Jω) или Mdt = dL
Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt)
Jdω = d(Jω) – изменение момента импульса тела,
Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.
2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью
ω = dφ/dt (измеряется в рад/с)
и угловым ускорением
ε = d²φ/dt² (измеряется в рад/с²).
При равномерном вращении (T оборотов в секунду), Частота вращения — число оборотов тела в единицу времени:
f = 1/T = ω/2
Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением
T = 1/f
Линейная скорость точки, находящейся на расстоянии R от оси вращения
Угловая скорость вращения тела
ω = f/Dt = 2/T
Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде:
E=
В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:
=∑
где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
3. Маятник представляет собой замкнутую систему.
Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю.
Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается.
В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке.
Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной.
Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной.
(Сумма кинетической и потенциальной энергии тел называется полной механической энергией)
1.a)m1=m2
p1V1=p2V2
V2=p1V1/p2=0,8V1/0.5=1.6V1
но так как погруженная части тчно также изменяются, то уровень вод не поднимется
б) если обьемы одинаковы,то части погруженны по разному, уровень воды увеличится
2.Fa=gpвV=gpabc=10*1000*0.25*0.12*0.065=19.5 Н
Fa(2)=gpбаbc=10*700*0.25*0.12*0.065=13.7 H
3.mg=Fa -льдина плавает
Fa=1800*10=18000 H - выталкивающая силв
m=pлV
V=m/p=18000/900=20 м3
Fa=gpвVпогр
pлVg=pвVпогрg
Vпогр=pлV/pв=900V/1000=0.9V=0.9*20=18 м3
4.mg=Fa - условие равновесия
Fa=pк(Vо+V)g - выталкивающая сила
m=pстV - масса стали
pстVg=pк(Vо+V)g
pчтV=pкVo+pкV
V(pст-pк)=pкVo
V=pкVo/(pст-pк)=800*0.00007/(7800-800)=0.000008 м3
m=pстV=7800*0.000008=0.0624 кг
5.F+mg=Fa - условие равновесия
Fa=gpвNVо - выталкивающая сила
m=pсNVо - масса бревен
gpвNVо-gpсNVo=F
N=F/gVo(pв-pс)=75000/10*0.5*(1000-500)=3 бревна
6.mg<Fa - условие подьема
(m+m1+m2)g<gpвоздухаV -условие подьема
m2=pводородаV=0.0899*80=7.2 кг
(m+m1+m2)g =(70+16+7.2)*10=932 Н
Fa=10*1.293*80=1034.4 Н
так как Fa>mg то шар поднимется